Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 12: 1395659, 2024.
Article in English | MEDLINE | ID: mdl-38911550

ABSTRACT

Genetic tools form the basis for the study of molecular mechanisms. Despite many recent advances in the field of genetic engineering in bacteria, genetic toolsets remain scarce for non-model organisms, such as the obligatory human pathogen Streptococcus pyogenes. To overcome this limitation and enable the straightforward investigation of gene functions in S. pyogenes, we have developed a comprehensive genetic toolset. By adapting and combining different tools previously applied in other Gram-positive bacteria, we have created new replicative and integrative plasmids for gene expression and genetic manipulation, constitutive and inducible promoters as well as fluorescence reporters for S. pyogenes. The new replicative plasmids feature low- and high-copy replicons combined with different resistance cassettes and a standardized multiple cloning site for rapid cloning procedures. We designed site-specific integrative plasmids and verified their integration by nanopore sequencing. To minimize the effect of plasmid integration on bacterial physiology, we screened publicly available RNA-sequencing datasets for transcriptionally silent sites. We validated this approach by designing the integrative plasmid pSpy0K6 targeting the transcriptionally silent gene SPy_1078. Analysis of the activity of different constitutive promoters indicated a wide variety of strengths, with the lactococcal promoter P 23 showing the strongest activity and the synthetic promoter P xylS2 showing the weakest activity. Further, we assessed the functionality of three inducible regulatory elements including a zinc- and an IPTG-inducible promoter as well as an erythromycin-inducible riboswitch that showed low-to-no background expression and high inducibility. Additionally, we demonstrated the applicability of two codon-optimized fluorescent proteins, mNeongreen and mKate2, as reporters in S. pyogenes. We therefore adapted the chemically defined medium called RPMI4Spy that showed reduced autofluorescence and enabled efficient signal detection in plate reader assays and fluorescence microscopy. Finally, we developed a plasmid-based system for genome engineering in S. pyogenes featuring the counterselection marker pheS*, which enabled the scarless deletion of the sagB gene. This new toolbox simplifies previously laborious genetic manipulation procedures and lays the foundation for new methodologies to study gene functions in S. pyogenes, leading to a better understanding of its virulence mechanisms and physiology.

3.
Nat Microbiol ; 5(11): 1390-1402, 2020 11.
Article in English | MEDLINE | ID: mdl-32747796

ABSTRACT

Obligate intracellular bacteria such as Chlamydia trachomatis undergo a complex developmental cycle between infectious, non-replicative elementary-body and non-infectious, replicative reticulate-body forms. Elementary bodies transform to reticulate bodies shortly after entering a host cell, a crucial process in infection, initiating chlamydial replication. As Chlamydia fail to replicate outside the host cell, it is unknown how the replicative part of the developmental cycle is initiated. Here we show, using a cell-free approach in axenic media, that the uptake of glutamine by the bacteria is crucial for peptidoglycan synthesis, which has a role in Chlamydia replication. The increased requirement for glutamine in infected cells is satisfied by reprogramming the glutamine metabolism in a c-Myc-dependent manner. Glutamine is effectively taken up by the glutamine transporter SLC1A5 and metabolized via glutaminase. Interference with this metabolic reprogramming limits the growth of Chlamydia. Intriguingly, Chlamydia failed to produce progeny in SLC1A5-knockout organoids and mice. Thus, we report on the central role of glutamine for the development of an obligate intracellular pathogenic bacterium and the reprogramming of host glutamine metabolism, which may provide a basis for innovative anti-infection strategies.


Subject(s)
Chlamydia Infections/metabolism , Chlamydia trachomatis/physiology , Glutamine/metabolism , Peptidoglycan/biosynthesis , Amino Acid Transport System ASC/genetics , Amino Acid Transport System ASC/metabolism , Animals , Cell Line , Chlamydia Infections/microbiology , Chlamydia trachomatis/growth & development , Chlamydia trachomatis/metabolism , Gene Expression Regulation , Host-Pathogen Interactions , Humans , Mice , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Signal Transduction
4.
Mol Biol Evol ; 36(4): 650-662, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30590541

ABSTRACT

The modification of adenosine to inosine at the first position of transfer RNA (tRNA) anticodons (I34) is widespread among bacteria and eukaryotes. In bacteria, the modification is found in tRNAArg and is catalyzed by tRNA adenosine deaminase A, a homodimeric enzyme. In eukaryotes, I34 is introduced in up to eight different tRNAs by the heterodimeric adenosine deaminase acting on tRNA. This substrate expansion significantly influenced the evolution of eukaryotic genomes in terms of codon usage and tRNA gene composition. However, the selective advantages driving this process remain unclear. Here, we have studied the evolution of I34, tRNA adenosine deaminase A, adenosine deaminase acting on tRNA, and their relevant codons in a large set of bacterial and eukaryotic species. We show that a functional expansion of I34 to tRNAs other than tRNAArg also occurred within bacteria, in a process likely initiated by the emergence of unmodified A34-containing tRNAs. In eukaryotes, we report on a large variability in the use of I34 in protists, in contrast to a more uniform presence in fungi, plans, and animals. Our data support that the eukaryotic expansion of I34-tRNAs was driven by the improvement brought by these tRNAs to the synthesis of proteins highly enriched in certain amino acids.


Subject(s)
Evolution, Molecular , Inosine , RNA, Transfer/genetics , Animals , Oenococcus/genetics , Phylogeny , Proteome , Tetrahymena thermophila/genetics
5.
Biochemistry ; 57(39): 5641-5647, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30199619

ABSTRACT

Inosine at the "wobble" position (I34) is one of the few essential posttranscriptional modifications in tRNAs (tRNAs). It results from the deamination of adenosine and occurs in bacteria on tRNAArgACG and in eukarya on six or seven additional tRNA substrates. Because inosine is structurally a guanosine analogue, reverse transcriptases recognize it as a guanosine. Most methods used to examine the presence of inosine rely on this phenomenon and detect the modified base as a change in the DNA sequence that results from the reverse transcription reaction. These methods, however, cannot always be applied to tRNAs because reverse transcription can be compromised by the presence of other posttranscriptional modifications. Here we present SL-ID (splinted ligation-based inosine detection), a reverse transcription-free method for detecting inosine based on an I34-dependent specific cleavage of tRNAs by endonuclease V, followed by a splinted ligation and polyacrylamide gel electrophoresis analysis. We show that the method can detect I34 on different tRNA substrates and can be applied to total RNA derived from different species, cell types, and tissues. Here we apply the method to solve previous controversies regarding the modification status of mammalian tRNAArgACG.


Subject(s)
Deoxyribonuclease IV (Phage T4-Induced)/chemistry , Electrophoresis, Polyacrylamide Gel/methods , Inosine/analysis , Oligodeoxyribonucleotides/chemistry , RNA, Transfer, Arg/chemistry , RNA, Transfer, Val/chemistry , Animals , Base Sequence , HEK293 Cells , HeLa Cells , Humans , Inosine/genetics , Mice , Nucleic Acid Hybridization , Oligodeoxyribonucleotides/genetics , RNA, Transfer, Arg/genetics , RNA, Transfer, Val/genetics
6.
Biochemistry ; 56(31): 4029-4038, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28703578

ABSTRACT

Transfer RNAs (tRNAs) are among the most heavily modified RNA species. Posttranscriptional tRNA modifications (ptRMs) play fundamental roles in modulating tRNA structure and function and are being increasingly linked to human physiology and disease. Detection of ptRMs is often challenging, expensive, and laborious. Restriction fragment length polymorphism (RFLP) analyses study the patterns of DNA cleavage after restriction enzyme treatment and have been used for the qualitative detection of modified bases on mRNAs. It is known that some ptRMs induce specific and reproducible base "mutations" when tRNAs are reverse transcribed. For example, inosine, which derives from the deamination of adenosine, is detected as a guanosine when an inosine-containing tRNA is reverse transcribed, amplified via polymerase chain reaction (PCR), and sequenced. ptRM-dependent base changes on reverse transcription PCR amplicons generated as a consequence of the reverse transcription reaction might create or abolish endonuclease restriction sites. The suitability of RFLP for the detection and/or quantification of ptRMs has not been studied thus far. Here we show that different ptRMs can be detected at specific sites of different tRNA types by RFLP. For the examples studied, we show that this approach can reliably estimate the modification status of the sample, a feature that can be useful in the study of the regulatory role of tRNA modifications in gene expression.


Subject(s)
Adenosine Deaminase/metabolism , Models, Biological , Polymorphism, Restriction Fragment Length , RNA Processing, Post-Transcriptional , RNA, Transfer, Ala/metabolism , RNA, Transfer, Thr/metabolism , Adenosine/metabolism , Adenosine Deaminase/chemistry , Adenosine Deaminase/genetics , Amplified Fragment Length Polymorphism Analysis , Base Pairing , Computational Biology , Deamination , Expert Systems , HeLa Cells , Humans , Hydrogen-Ion Concentration , Inosine/metabolism , RNA Interference , RNA, Small Interfering/metabolism , RNA, Transfer, Ala/antagonists & inhibitors , RNA, Transfer, Thr/antagonists & inhibitors , RNA, Transfer, Val/antagonists & inhibitors , RNA, Transfer, Val/metabolism , Reverse Transcription , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...