Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Pulm Med ; 24(1): 227, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730287

ABSTRACT

OBJECTIVES: 18F-fluorodeoxyglucose (FDG) PET/CT has been widely used for the differential diagnosis of cancer. Semi-quantitative standardized uptake value (SUV) is known to be affected by multiple factors and may make it difficult to differentiate between benign and malignant lesions. It is crucial to find reliable quantitative metabolic parameters to further support the diagnosis. This study aims to evaluate the value of the quantitative metabolic parameters derived from dynamic FDG PET/CT in the differential diagnosis of lung cancer and predicting epidermal growth factor receptor (EGFR) mutation status. METHODS: We included 147 patients with lung lesions to perform FDG PET/CT dynamic plus static imaging with informed consent. Based on the results of the postoperative pathology, the patients were divided into benign/malignant groups, adenocarcinoma (AC)/squamous carcinoma (SCC) groups, and EGFR-positive (EGFR+)/EGFR-negative (EGFR-) groups. Quantitative parameters including K1, k2, k3, and Ki of each lesion were obtained by applying the irreversible two-tissue compartmental modeling using an in-house Matlab software. The SUV analysis was performed based on conventional static scan data. Differences in each metabolic parameter among the group were analyzed. Wilcoxon rank-sum test, independent-samples T-test, and receiver-operating characteristic (ROC) analysis were performed to compare the diagnostic effects among the differentiated groups. P < 0.05 were considered statistically significant for all statistical tests. RESULTS: In the malignant group (N = 124), the SUVmax, k2, k3, and Ki were higher than the benign group (N = 23), and all had-better performance in the differential diagnosis (P < 0.05, respectively). In the AC group (N = 88), the SUVmax, k3, and Ki were lower than in the SCC group, and such differences were statistically significant (P < 0.05, respectively). For ROC analysis, Ki with cut-off value of 0.0250 ml/g/min has better diagnostic specificity than SUVmax (AUC = 0.999 vs. 0.70). In AC group, 48 patients further underwent EGFR testing. In the EGFR (+) group (N = 31), the average Ki (0.0279 ± 0.0153 ml/g/min) was lower than EGFR (-) group (N = 17, 0.0405 ± 0.0199 ml/g/min), and the difference was significant (P < 0.05). However, SUVmax and k3 did not show such a difference between EGFR (+) and EGFR (-) groups (P>0.05, respectively). For ROC analysis, the Ki had a cut-off value of 0.0350 ml/g/min when predicting EGFR status, with a sensitivity of 0.710, a specificity of 0.588, and an AUC of 0.674 [0.523-0.802]. CONCLUSION: Although both techniques were specific, Ki had a greater specificity than SUVmax when the cut-off value was set at 0.0250 ml/g/min for the differential diagnosis of lung cancer. At a cut-off value of 0.0350 ml/g/min, there was a 0.710 sensitivity for EGFR status prediction. If EGFR testing is not available for a patient, dynamic imaging could be a valuable non-invasive screening method.


Subject(s)
ErbB Receptors , Fluorodeoxyglucose F18 , Lung Neoplasms , Mutation , Positron Emission Tomography Computed Tomography , Humans , Lung Neoplasms/genetics , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Lung Neoplasms/diagnosis , ErbB Receptors/genetics , Male , Diagnosis, Differential , Female , Middle Aged , Aged , Adult , Radiopharmaceuticals , ROC Curve , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/diagnostic imaging , Aged, 80 and over , Adenocarcinoma/genetics , Adenocarcinoma/diagnostic imaging , Adenocarcinoma/pathology , Retrospective Studies
2.
EJNMMI Phys ; 11(1): 23, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38441830

ABSTRACT

PURPOSE: This study aimed to evaluate the clinical feasibility of early 30-minute dynamic 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) positron emission tomography (PET) scanning protocol for patients with lung lesions in comparison to the standard 65-minute dynamic FDG-PET scanning as a reference. METHODS: Dynamic 18F-FDG PET images of 146 patients with 181 lung lesions (including 146 lesions confirmed by histology) were analyzed in this prospective study. Dynamic images were reconstructed into 28 frames with a specific temporal division protocol for the scan data acquired 65 min post-injection. Ki images and quantitative parameters Ki based on two different acquisition durations [the first 30 min (Ki-30 min) and 65 min (Ki-65 min)] were obtained by applying the irreversible two-tissue compartment model using in-house Matlab software. The two acquisition durations were compared for Ki image quality (including visual score analysis and number of lesions detected) and Ki value (including accuracy of Ki, the value of differential diagnosis of lung lesions and prediction of PD-L1 status) by Wilcoxon's rank sum test, Spearman's rank correlation analysis, receiver operating characteristic (ROC) curve, and the DeLong test. The significant testing level (alpha) was set to 0.05. RESULTS: The quality of the Ki-30 min images was not significantly different from the Ki-65 min images based on visual score analysis (P > 0.05). In terms of Ki value, among 181 lesions, Ki-65 min was statistically higher than Ki-30 min (0.027 ± 0.017 ml/g/min vs. 0.026 ± 0.018 ml/g/min, P < 0.05), while a very high correlation was obtained between Ki-65 min and Ki-30 min (r = 0.977, P < 0.05). In the differential diagnosis of lung lesions, ROC analysis was performed on 146 histologically confirmed lesions, the area under the curve (AUC) of Ki-65 min, Ki-30 min, and SUVmax was 0.816, 0.816, and 0.709, respectively. According to the Delong test, no significant differences in the diagnostic accuracies were found between Ki-65 min and Ki-30 min (P > 0.05), while the diagnostic accuracies of Ki-65 min and Ki-30 min were both significantly higher than that of SUVmax (P < 0.05). In 73 (NSCLC) lesions with definite PD-L1 expression results, the Ki-65 min, Ki-30 min, and SUVmax in PD-L1 positivity were significantly higher than that in PD-L1 negativity (P < 0.05). And no significant differences in predicting PD-L1 positivity were found among Ki-65 min, Ki-30 min, and SUVmax (AUC = 0.704, 0.695, and 0.737, respectively, P > 0.05), according to the results of ROC analysis and Delong test. CONCLUSIONS: This study indicates that an early 30-minute dynamic FDG-PET acquisition appears to be sufficient to provide quantitative images with good-quality and accurate Ki values for the assessment of lung lesions and prediction of PD-L1 expression. Protocols with a shortened early 30-minute acquisition time may be considered for patients who have difficulty with prolonged acquisitions to improve the efficiency of clinical acquisitions.

3.
Front Oncol ; 13: 1205379, 2023.
Article in English | MEDLINE | ID: mdl-38023132

ABSTRACT

Objective: To investigate the diagnostic value of the maximum standard uptake value (SUVmax) of quantitative single-photon emission computed tomography/computed tomography (SPECT/CT) in solitary undetermined bone lesions. Methods: In Part I, retrospective study, 167 untreated patients with extra-skeletal malignant tumors by pathology were consecutively enrolled for staging with Tc-99m methyl-diphosphonate (99mTc-MDP) whole-body bone scan (WBS) and quantitative SPECT/CT, and a total of 396 bone lesions with abnormal radioactivity concentration in 167 patients were included from April 2019 to September 2020. The differences in SUVmax among the benign bone lesions, malignant bone lesions, and normal vertebrae were analyzed. The receiver operating characteristic (ROC) curve and cutoff value of SUVmax were obtained. Part II, prospective study, 49 solitary undetermined bone lesions in SPECT/CT in 49 untreated patients with extra-skeletal malignant tumors were enrolled from October 2020 to August 2022. The diagnostic efficacy of SUVmax in solitary undetermined bone lesions was assessed. The final diagnosis was based on follow-up imaging (CT, MRI, or 2-deoxy-2-[18F]fluoro-D-glucose-positron emission tomography/computed tomography) for at least 12 months. Results: In Part I, a total of 156 malignant and 240 benign bone lesions was determined; the SUVmax of malignant lesions (26.49 ± 12.63) was significantly higher than those of benign lesions (13.92 ± 7.16) and normal vertebrae (6.97 ± 1.52) (P = 0.00). The diagnostic efficiency of the SUVmax of quantitative SPECT/CT revealed a sensitivity of 75.00% and a specificity of 81.70% at a cutoff value of 18.07. In Part II, 17 malignant and 32 benign lesions were determined. Using SUVmax ≥18.07 as a diagnostic criterion of malignancy, it has a sensitivity of 82.35%, a specificity of 93.75%, and an accuracy of 89.80%. Conclusion: The SUVmax of quantitative SPECT/CT is valuable in evaluating solitary undetermined bone lesions. Using a cutoff SUVmax value of 18.07, quantitative SPECT/CT demonstrated high sensitivity, specificity, and accuracy in differentiating malignant from benign bone lesions.

4.
EJNMMI Phys ; 10(1): 67, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37874426

ABSTRACT

BACKGROUND: Dynamic positron emission tomography (PET) images are useful in clinical practice because they can be used to calculate the metabolic parameters (Ki) of tissues using graphical methods (such as Patlak plots). Ki is more stable than the standard uptake value and has a good reference value for clinical diagnosis. However, the long scanning time required for obtaining dynamic PET images, usually an hour, makes this method less useful in some ways. There is a tradeoff between the scan durations and the signal-to-noise ratios (SNRs) of Ki images. The purpose of our study is to obtain approximately the same image as that produced by scanning for one hour in just half an hour, improving the SNRs of images obtained by scanning for 30 min and reducing the necessary 1-h scanning time for acquiring dynamic PET images. METHODS: In this paper, we use U-Net as a feature extractor to obtain feature vectors with a priori knowledge about the image structure of interest and then utilize a parameter generator to obtain five parameters for a two-tissue, three-compartment model and generate a time activity curve (TAC), which will become close to the original 1-h TAC through training. The above-generated dynamic PET image finally obtains the Ki parameter image. RESULTS: A quantitative analysis showed that the network-generated Ki parameter maps improved the structural similarity index measure and peak SNR by averages of 2.27% and 7.04%, respectively, and decreased the root mean square error (RMSE) by 16.3% compared to those generated with a scan time of 30 min. CONCLUSIONS: The proposed method is feasible, and satisfactory PET quantification accuracy can be achieved using the proposed deep learning method. Further clinical validation is needed before implementing this approach in routine clinical applications.

5.
Diagnostics (Basel) ; 13(12)2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37370943

ABSTRACT

SMARCA4-deficient non-small cell lung cancer (NSCLC) is a more recently recognized subset of NSCLC. We describe the 18F-fluorodeoxyglucose (FDG) PET/CT findings in a rare case of SMARCA4-deficient NSCLC and response to therapy. A 45-year-old male patient with a history of heavy smoking (10 years) underwent an 18F-fluorodeoxyglucose (FDG) PET/CT dynamic (chest) + static (whole-body) scan for diagnosis and pre-treatment staging. 18F-FDG PET/CT showed an FDG-avid mass in the upper lobe of the left lung (SUVmax of 22.4) and FDG-avid lymph nodes (LN) in the left pulmonary hilar region (SUVmax of 5.7). In addition, there were multiple metastases throughout the body, including in the distant LNs, adrenal glands, bone, left subcutaneous lumbar region, and brain. Pathological findings confirmed SMARCA4-deficient NSCLC. After four cycles of chemotherapy and immune checkpoint inhibitors (ICI), the patient underwent again an 18F-FDG PET/CT scan (including a dynamic scan) for efficacy evaluation. We report a case that deepens the understanding of the 18F-FDG PET/CT presentation of SMARCA4-deficient NSCLC as well as dynamic imaging features and parametric characteristics.

6.
Front Oncol ; 12: 1005924, 2022.
Article in English | MEDLINE | ID: mdl-36439506

ABSTRACT

Objectives: 18F-fluorodeoxyglucose (FDG) PET/CT has been widely used in tumor diagnosis, staging, and response evaluation. To determine an optimal therapeutic strategy for lung cancer patients, accurate staging is essential. Semi-quantitative standardized uptake value (SUV) is known to be affected by multiple factors and may fail to differentiate between benign and malignant lesions. Lymph nodes (LNs) in the mediastinal and pulmonary hilar regions with high FDG uptake due to granulomatous lesions such as tuberculosis, which has a high prevalence in China, pose a diagnostic challenge. This study aims to evaluate the diagnostic value of the quantitative metabolic parameters derived from dynamic 18F-FDG PET/CT in differentiating metastatic and non-metastatic LNs in lung cancer. Methods: One hundred and eight patients with pulmonary nodules were enrolled to perform 18F-FDG PET/CT dynamic + static imaging with informed consent. One hundred and thirty-five LNs in 29 lung cancer patients were confirmed by pathology. Static image analysis parameters including LN-SUVmax, LN-SUVmax/primary tumor SUVmax (LN-SUVmax/PT-SUVmax), mediastinal blood pool SUVmax (MBP-SUVmax), LN-SUVmax/MBP-SUVmax, and LN-SUVmax/short diameter. Quantitative parameters including K1, k2, k3 and Ki and of each LN were obtained by applying the irreversible two-tissue compartment model using in-house Matlab software. Ki/K1 was computed subsequently as a separate marker. We further divided the LNs into mediastinal LNs (N=82) and pulmonary hilar LNs (N=53). Wilcoxon rank-sum test or Independent-samples T-test and receiver-operating characteristic (ROC) analysis was performed on each parameter to compare the diagnostic efficacy in differentiating lymph node metastases from inflammatory uptake. P<0.05 were considered statistically significant. Results: Among the 135 FDG-avid LNs confirmed by pathology, 49 LNs were non-metastatic, and 86 LNs were metastatic. LN-SUVmax, MBP-SUVmax, LN-SUVmax/MBP-SUVmax, and LN-SUVmax/short diameter couldn't well differentiate metastatic from non-metastatic LNs (P>0.05). However, LN-SUVmax/PT-SUVmax have good performance in the differential diagnosis of non-metastatic and metastatic LNs (P=0.039). Dynamic metabolic parameters in addition to k3, the parameters including K1, k2, Ki, and Ki/K1, on the other hand, have good performance in the differential diagnosis of metastatic and non-metastatic LNs (P=0.045, P=0.001, P=0.001, P=0.001, respectively). For ROC analysis, the metabolic parameters Ki (AUC of 0.672 [0.579-0.765], sensitivity 0.395, specificity 0.918) and Ki/K1 (AUC of 0.673 [0.580-0.767], sensitivity 0.570, specificity 0.776) have good performance in the differential diagnosis of metastatic from non-metastatic LNs than SUVmax (AUC of 0.596 [0.498-0.696], sensitivity 0.826, specificity 0.388), included the mediastinal region and pulmonary hilar region. Conclusion: Compared with SUVmax, quantitative parameters such as K1, k2, Ki and Ki/K1 showed promising results for differentiation of metastatic and non-metastatic LNs with high uptake. The Ki and Ki/K1 had a high differential diagnostic value both in the mediastinal region and pulmonary hilar region.

SELECTION OF CITATIONS
SEARCH DETAIL
...