Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Mar Pollut Bull ; 203: 116462, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749153

ABSTRACT

Analyzing the environmental factors affecting benthic communities in coastal areas is crucial for uncovering key factors that require conservation action. Here, we collected benthic and environmental (physical-chemical-historical and land-based) data for 433 transects in Taiwan. Using a k-means approach, five communities dominated by crustose coralline algae, turfs, stony corals, digitate, or bushy octocorals were first delineated. Conditional random forest models then identified physical, chemical, and land-based factors (e.g., light intensity, nitrite, and population density) relevant to community delineation and occurrence. Historical factors, including typhoons and temperature anomalies, had only little effect. The prevalent turf community correlated positively with chemical and land-based drivers, which suggests that anthropogenic impacts are causing a benthic homogenization. This mechanism may mask the effects of climate disturbances and regional differentiation of benthic assemblages. Consequently, management of nutrient enrichment and terrestrial runoff is urgently needed to improve community resilience in Taiwan amidst increasing challenges of climate change.


Subject(s)
Anthozoa , Climate Change , Environmental Monitoring , Taiwan , Animals , Ecosystem , Biodiversity
2.
Chemosphere ; 334: 138872, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37182716

ABSTRACT

In terrestrial ecosystems, the nitrogen dynamics, including N2O production, are majorly regulated by a complex consortium of microbes favored by different substrates and environmental conditions. To better predict the daily, seasonal and annual variation in N2O fluxes, it is critical to estimate the temperature sensitivity of different microbial groups for N2O fluxes under oxic and suboxic conditions prevalent in soil and wetlands. Here, we studied the temperature sensitivity of two groups of ammonia oxidizers, archaea (AOA) and bacteria (AOB), in relation to N2O fluxes through both nitrification and nitrifier-denitrification pathways across a wide temperature gradient (10-55 °C). Using square root theory (SQRT) and macromolecular rate theory (MMRT) models, we estimated thermodynamic parameters and cardinal temperatures, including maximum temperature sensitivity (TSmax). The distinction between N2O pathways was facilitated by microbial-specific inhibitors (PTIO and C2H2) and controlled oxygen supply environments (oxic: ambient level; and suboxic: ∼4%). We found that nitrification supported by AOA (NtA) and AOB (NtB) dominated N2O production in an oxic climate, while only AOB-supported nitrifier-denitrification (NDB) majorly contributed (>90%) to suboxic N2O budget. The models predicted significantly higher optimum temperature (Topt) and TSmax for NtA and NDB compared to NtB. Intriguingly, both NtB and NDB exhibited significantly wider temperature ranges than NtA. Altogether, our results suggest that temperature and oxygen supply control the dominance of specific AOA- and AOB-supported N2O pathways in soil and sediments. This emergent understanding can potentially contribute toward novel targeted N2O inhibitors for GHG mitigation under global warming.


Subject(s)
Ammonia , Ecosystem , Ammonia/metabolism , Oxidation-Reduction , Soil Microbiology , Archaea/metabolism , Nitrification , Soil/chemistry , Temperature , Oxygen/metabolism , Nitrous Oxide/analysis
3.
Sci Total Environ ; 882: 163412, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37059149

ABSTRACT

Microbes are a critical component of soil ecosystems, performing crucial functions in biogeochemical cycling, carbon sequestration, and plant health. However, it remains uncertain how their community structure, functioning, and resultant nutrient cycling, including net GHG fluxes, would respond to climate change at different scales. Here, we review global and regional climate change effects on soil microbial community structure and functioning, as well as the climate-microbe feedback and plant-microbe interactions. We also synthesize recent studies on climate change impacts on terrestrial nutrient cycles and GHG fluxes across different climate-sensitive ecosystems. It is generally assumed that climate change factors (e.g., elevated CO2 and temperature) will have varying impacts on the microbial community structure (e.g., fungi-to-bacteria ratio) and their contribution toward nutrient turnover, with potential interactions that may either enhance or mitigate each other's effects. Such climate change responses, however, are difficult to generalize, even within an ecosystem, since they are subjected to not only a strong regional influence of current ambient environmental and edaphic conditions, historical exposure to fluctuations, and time horizon but also to methodological choices (e.g., network construction). Finally, the potential of chemical intrusions and emerging tools, such as genetically engineered plants and microbes, as mitigation strategies against global change impacts, particularly for agroecosystems, is presented. In a rapidly evolving field, this review identifies the knowledge gaps complicating assessments and predictions of microbial climate responses and hindering the development of effective mitigation strategies.


Subject(s)
Climate Change , Soil Microbiology , Carbon Dioxide/analysis , Hot Temperature , Soil Erosion , Bioengineering , Bacteria/genetics
4.
Chemosphere ; 289: 133049, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34838835

ABSTRACT

Understanding the environmental niche segregation of ammonia-oxidizing archaea (AOA) and bacteria (AOB) and its impact on their relative contributions to nitrification and nitrous oxide (N2O) production is essential for predicting N2O dynamics within an ecosystem. Here, we used ammonia oxidizer-specific inhibitors to measure the differential contributions of AOA and AOB to potential ammonia oxidization (PAO) and N2O fluxes over pH (4.0-9.0) and temperature (10-45 °C) gradients in five soils and three wetland sediments. AOA and AOB activities were differentiated using PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide), 1-octyne, and acetylene. We used square root growth (SQRT) and macromolecular rate theory (MMRT) models to estimate cardinal temperatures and thermodynamic characteristics for AOA- and AOB-dominated PAO and N2O fluxes. We found that AOA and AOB occupied different niches for PAO, and soil temperature was the major determinant of niche specialization. SQRT and MMRT models predicted a higher optimum temperature for AOA-dominated PAO and N2O fluxes compared with those of AOB. Additionally, PAO was dominated by AOA in acidic conditions, whereas both AOA- and AOB-dominated N2O fluxes decreased with increasing pH. Consequently, net N2O fluxes (AOA and AOB) under acidic conditions were approximately one to three-fold higher than those observed in alkaline conditions. Moreover, structural equation and linear regression modeling confirmed a significant positive correlation (R2 = 0.45, p < 0.01) between PAO and N2O fluxes. Collectively, these results show the influence of ammonia oxidizer responses to temperature and pH on nitrification-driven N2O fluxes, highlighting the potential for mitigating N2O emissions via pH manipulation.


Subject(s)
Ammonia , Soil , Archaea , Ecosystem , Nitrification , Oxidation-Reduction , Soil Microbiology
5.
Article in English | MEDLINE | ID: mdl-34281066

ABSTRACT

Nitrification inhibitors (NIs) such as dicyandiamide (DCD), 3,4-dimethylpyrazole phosphate (DMPP), and allylthiourea (AT) are commonly used to suppress ammonia oxidization at different time scales varying from a few hours to several months. Although the responses of NIs to edaphic and temperature conditions have been studied, the influence of the aforementioned factors on their inhibitory effect remains unknown. In this study, laboratory-scale experiments were conducted to assess the short-term (24 h) influence of eight abiotic and biotic factors on the inhibitory effects of DCD, DMPP, and AT across six cropped and non-cropped soils at two temperature conditions with three covariates of soil texture. Simultaneously, the dominant contributions of ammonia-oxidizing archaea (AOA) and bacteria (AOB) to potential ammonia oxidization (PAO) were distinguished using the specific inhibitor 2 phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide (PTIO). Our results revealed that AT demonstrated a considerably greater inhibitory effect (up to 94.9% for an application rate of 75 mg of NI/kg of dry soil) than DCD and DMPP. The inhibitory effect of AT was considerably affected by the relative proportions of silt, sand, and clay in the soil and total PAO. In contrast to previous studies, the inhibitory effects of all three NIs remained largely unaffected by the landcover type and temperature conditions for the incubation period of 24 h. Furthermore, the efficacy of all three tested NIs was not affected by the differential contributions of AOA and AOB to PAO. Collectively, our results suggested a limited influence of temperature on the inhibitory effects of all three NIs but a moderate dependence of AT on the soil texture and PAO. Our findings can enhance the estimation of the inhibitory effect in soil, and pure cultures targeting the AOA and AOB supported ammonia oxidization and, hence, nitrogen dynamics under NI applications.


Subject(s)
Nitrification , Soil , Ammonia/analysis , Guanidines , Oxidation-Reduction , Phosphates , Pyrazoles , Soil Microbiology , Thiourea/analogs & derivatives
6.
J Environ Manage ; 294: 112886, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34130136

ABSTRACT

Accurate information provided by reliable models is essential for identifying hotspots and mitigating roadkill. However, existing methods, such as kernel density estimation (KDE) and maximum entropy modeling (ME) may individually identify only a subset of the suitable locations for mitigation, because KDE cannot detect hotspots once local abundances are depressed, and ME may only partially identify current hotspots due to imperfect discrimination skill. Here, we propose a hybrid consensus modeling (HCM) approach that leverages the strengths of both KDE and ME by using their consensus to identify the core subset of hotspots. We collected herpetofauna (amphibians and reptiles) roadkill data (N = 839) along four roads in Taiwan (R.O.C.) to evaluate the statistical performance and theoretical mitigation efficiency of HCM, KDE and ME, and to compare the allocation among roads, spatial clustering, and environmental conditions in the identified hotspots. HCM was applied on the herpetofauna dataset as well as separately on amphibians and reptiles. Although the discrimination skill of KDE and ME models for both target clades together was good to excellent (AUCKDE = 0.944, AUCME = 0.822), the highest theoretical mitigation efficiency, was displayed by HCM Consensus (2.89), followed by KDE (2.58), and ME (1.91). Furthermore, we show that theoretical mitigation efficiency increases with decreasing spatial clustering (Moran's I). Given pervasive budget constraints, we recommend to limit permanent mitigation measures such as fenced culverts to HCM Consensus hotspots, temporary measures to KDE hotspots, and to target additional monitoring at ME hotspots.


Subject(s)
Amphibians , Reptiles , Animals , Consensus , Taiwan
7.
Sci Total Environ ; 764: 144349, 2021 Apr 10.
Article in English | MEDLINE | ID: mdl-33412402

ABSTRACT

Soil encompasses diverse microbial communities that are essential for fundamental ecosystem functions such as biogeochemical cycling. To better understand underlying biogeochemical processes, it is necessary to know the structure of soil archaeal and bacterial communities and their responses to edaphic and climate variables within and across various land cover types (LCTs) and environmental zones (ENZs). Here we sampled eighty-nine sites across five ENZs and four LCTs within the Western Pacific region. Through leveraging the second-generation sequencing of topsoil samples, we showed that α-diversity (taxonomic diversity) of archaea strongly varied within LCTs, whereas bacterial α-diversity was significantly controlled by both LCT and ENZ. Soil archaea and bacteria showed global niche differentiation associated with contrasting diversity responses to latitude and differential responses of microbial diversity patterns to edaphic and climate variables within LCTs and ENZs. In contrast to α-diversity, microbial ß-diversity (the compositional dissimilarity between sites) was majorly governed by ENZs, particularly for archaea (P < 0.01). Our results highlight the importance of LCTs and ENZs for understanding soil microbial contributions to nutrient dynamics and ecosystem resilience under land-use intensification and climate change.


Subject(s)
Ecosystem , Microbiota , Archaea/genetics , Bacteria , Biodiversity , Soil , Soil Microbiology
8.
Sci Total Environ ; 751: 141721, 2021 Jan 10.
Article in English | MEDLINE | ID: mdl-32861948

ABSTRACT

Globally, soils are subject to radical changes in their biogeochemistry as rampant deforestation and other forms of land use and climate change continue to transform planet Earth. To better understand soil ecosystem functioning, it is necessary to understand the responses of soil microbial diversity and community structure to changing climate, land cover, and associated environmental variables. With next-generation sequencing, we investigated changes in topsoil fungi community structure among different land cover types (from Forest to Cropland) and climate zones (from Hot to Cold zones) in the Western Pacific Region. We demonstrated that climate zones substantially (P = 0.001) altered the soil fungal beta-diversity (change in community composition), but not alpha-diversity (taxonomical diversity). In particular, precipitation, temperature, and also latitude were the best predictors of beta-diversity. Individual fungal classes displayed divergent but strong responses to climate variables and latitude, suggesting niche differentiation at lower taxonomic levels. We also demonstrated that fungal taxonomic diversity differentially responded to latitude across land covers: fungal diversity increased towards lower latitudes in the Forest and Cropland (R2 = 0.19) but increased towards both lower and higher latitudes in Fallow land (R2 = 0.45). Further, alpha-diversity was significantly influenced by soil pH in Forest (P = 0.02), and by diurnal temperature range in Fallow land and mean annual precipitation in Cropland. Collectively, various land cover types had differential influence on the latitude diversity gradient, while climate, and to some extent, edaphic variables, were crucial in shaping soil fungal community structure. Our results can also serve as a baseline for estimating global change impacts on fungal community structure in the Western Pacific Region.


Subject(s)
Mycobiome , Climate Change , Ecosystem , Forests , Soil , Soil Microbiology
9.
Sci Total Environ ; 687: 654-666, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31220719

ABSTRACT

Rising energy needs and pressure to reduce greenhouse gas emissions have led to a significant increase in solar power projects worldwide. Recently, the development of floating photovoltaic (FPV) systems offers promising opportunities for land scarce areas. We present a dynamic model that simulates the main biochemical processes in a milkfish (Chanos chanos) pond subject to FPV cover. We validated the model against experimental data collected from ponds with and without cover during two production seasons (winter and summer) and used it to perform a Monte-Carlo analysis of the ecological effects of different extents of cover. Our results show that the installation of FPV on fish ponds may have a moderate negative impact on fish production, due to a reduction in dissolved oxygen levels. However, losses in fish production are more than compensated by gains in terms of energy (capacity of around 1.13 MW/ha). We estimated that, with approximately 40,000 ha of aquaculture ponds in Taiwan, the deployment of FPV on fish ponds in Taiwan could accommodate an installed capacity more twice as high as the government's objective of 20 GW solar power by 2025. We argue that the rules and regulations pertaining to the integration of FPV on fish ponds should be updated to allow realizing the full potential of this new green technology.


Subject(s)
Aquaculture/methods , Models, Theoretical , Solar Energy
10.
Materials (Basel) ; 12(10)2019 May 16.
Article in English | MEDLINE | ID: mdl-31100842

ABSTRACT

The effect of severe plastic deformation by high-pressure torsion (HPT) on the structure and plastic tensile properties of two Zr-based bulk metallic glasses, Zr55.7Ni10Al7Cu19Co8.3 and Zr64Ni10Al7Cu19, was investigated. The compositions were chosen because, in TEM investigation, Zr55.7Ni10Al7Cu19Co8.3 exhibited nanoscale inhomogeneity, while Zr64Ni10Al7Cu19 appeared homogeneous on that length scale. The nanoscale inhomogeneity was expected to result in an increased plastic strain limit, as compared to the homogeneous material, which may be further increased by severe mechanical work. The as-cast materials exhibited 0.1% tensile plasticity for Zr64Ni10Al7Cu19 and Zr55.7Ni10Al7Cu19Co8.3. Following two rotations of HPT treatment, the tensile plastic strain was increased to 0.5% and 0.9%, respectively. Further testing was performed by X-ray diffraction and by differential scanning calorimetry. Following two rotations of HPT treatment, the initially fully amorphous Zr55.7Ni10Al7Cu19Co8.3 exhibited significantly increased free volume and a small volume fraction of nanocrystallites. A further increase in HPT rotation number did not result in an increase in plastic ductility of both alloys. Possible reasons for the different mechanical behavior of nanoscale heterogeneous Zr55.7Ni10Al7Cu19Co8.3 and homogeneous Zr64Ni10Al7Cu19 are presented.

11.
NPJ Microgravity ; 5: 4, 2019.
Article in English | MEDLINE | ID: mdl-30820447

ABSTRACT

Here we present measurements of surface tension and viscosity of the bulk glass-forming alloy Pd43Cu27Ni10P20 performed during containerless processing under reduced gravity. We applied the oscillating drop method in an electromagnetic levitation facility on board of parabolic flights. The measured viscosity exhibits a pronounced temperature dependence following an Arrhenius law over a temperature range from 1100 K to 1450 K. Together with literature values of viscosity at lower temperatures, the viscosity of Pd43Cu27Ni10P20 can be well described by a free volume model. X-ray diffraction analysis on the material retrieved after the parabolic flights confirm the glassy nature after vitrification of the bulk samples and thus the absence of crystallization during processing over a wide temperature range.

12.
Proc Natl Acad Sci U S A ; 104(32): 12962-5, 2007 Aug 07.
Article in English | MEDLINE | ID: mdl-17664428

ABSTRACT

Reversible formation and disappearance of vacant spaces (vacancy-type defects) in bulk Zr57Cu15.4Ni12.6Nb5Al10 glass are directly evidenced by high-resolution, time-differential dilatometry studies. The vacancy kinetics are strongly temperature-dependent, with an effective migration enthalpy of HVM=3.34 eV. This may explain the strong temperature dependence of glass properties such as viscosity. The results presented here are of general importance for understanding amorphous condensed matter and biomaterials and for the technical development of amorphous steels.

SELECTION OF CITATIONS
SEARCH DETAIL
...