Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Affect Disord ; 283: 229-235, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33561804

ABSTRACT

BACKGROUND: Small hippocampal volume is a prevalent neurostructural abnormality in posttraumatic stress disorder (PTSD). However, whether the hippocampal atrophy is the cause of disease symptoms or a pre-existing risk factor and whether it is a reversible alteration or a permanent trait are unclear. The trait- or state-dependent alteration could also differ among the hippocampal subfields. METHODS: The study examined the longitudinal hippocampal volume changes due to positive emotional training with left amygdala (LA) real-time fMRI neurofeedback (rtfMRI-nf) in combat veterans with PTSD. The participants were trained to increase the neurofeedback signal from LA (experimental group, N = 20) or brain region not involved in emotion processing (control group, N = 9) by recalling a positive autobiographical memory. The pre- and post-training structural MRI brain images were processed with FreeSurfer to evaluate the hippocampal subfield volumes. Hippocampal volumes for healthy controls (N = 43) were also examined to evaluate the baseline abnormality in PTSD. RESULTS: A significant group difference in volume change was found in the left CA1 head region. This region had the most significant volume reduction at the baseline in PTSD. The experimental group showed a significant volume increase, while the control group showed a significant volume decrease in this region. The volume change in the control group negatively correlated with interval days between the scans. LIMITATIONS: A cognitive improvement due to the hippocampal volume increase could not be found with symptom scales. CONCLUSIONS: RtfMRI-nf positive emotional training increased the hippocampus volume among people with PTSD, suggesting that hippocampal atrophy in PTSD is modifiable.


Subject(s)
Neurofeedback , Stress Disorders, Post-Traumatic , Amygdala/diagnostic imaging , Emotions , Hippocampus/diagnostic imaging , Humans , Magnetic Resonance Imaging , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/therapy
2.
Neuroimage Clin ; 24: 102047, 2019.
Article in English | MEDLINE | ID: mdl-31711031

ABSTRACT

Self-regulation of brain activation with real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) is emerging as a promising treatment for psychiatric disorders. The association between the regulation and symptom reduction, however, has not been consistent, and the mechanisms underlying the symptom reduction remain poorly understood. The present study investigated brain activity mediators of the amygdala rtfMRI-nf training effect on combat veterans' PTSD symptom reduction. The training was designed to increase a neurofeedback signal either from the left amygdala (experimental group; EG) or from a control region not implicated in emotion regulation (control group; CG) during positive autobiographical memory recall. We employed a structural equation model mapping analysis to identify brain regions that mediated the effects of the rtfMRI-nf training on PTSD symptoms. Symptom reduction was mediated by low activation in the dorsomedial prefrontal cortex (DMPFC) and the middle cingulate cortex. There was a trend toward less activation in these regions for the EG compared to the CG. Low activation in the precuneus, the right superior parietal, the right insula, and the right cerebellum also mediated symptom reduction while their effects were moderated by the neurofeedback signal; a higher signal was linked to less effect on symptom reduction. This moderation was not specific to the EG. MDD comorbidity was associated with high DMPFC activation, which resulted in less effective regulation of the feedback signal. These results indicated that symptom reduction due to the neurofeedback training was not specifically mediated by the neurofeedback target activity, but broad regions were involved in the process.


Subject(s)
Amygdala/diagnostic imaging , Emotions/physiology , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/therapy , Adult , Brain Mapping , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Neurofeedback , Stress Disorders, Post-Traumatic/psychology , Veterans/psychology
3.
Schizophr Res ; 206: 291-299, 2019 04.
Article in English | MEDLINE | ID: mdl-30478008

ABSTRACT

BACKGROUND: Several studies have implicated herpes simplex virus-type 1 (HSV-1) in the pathophysiology of schizophrenia. A recent trial demonstrated that the anti-viral medication valacylovir, which prevents replication of activated HSV-1, improved selected cognitive deficits in people with schizophrenia. In this study, we examined demographic and illness related differences between HSV-1 positive versus HSV-1 negative subjects with early phase schizophrenia and attempted to replicate the previous valacyclovir treatment results in this population. METHODS: 170 subjects with schizophrenia (HSV-1 positive N = 70; HSV-1 negative N = 96) from 12 US sites participated in the HSV-1 positive versus negative comparisons, and were randomized 1:1 to valacyclovir (1.5 g BID) or placebo for a 16-week, double-blind efficacy trial. The primary endpoints were working and verbal memory. RESULTS: The HSV-1 positive group, as compared to the HSV-1 negative group, were older (p < 0.001) with fewer males (p = 0.003), and had a longer duration of illness (p = 0.008), more positive symptoms (p = 0.013), poorer quality of life (p = 0.034) and more impairment on the letter-number sequencing test, which is a measure of working memory (p = 0.045). Valacyclovir failed to significantly improve any of the cognitive indices, symptom or functioning measures. CONCLUSIONS: HSV-1 sero-positivity appears to be a marker of a subgroup with a more severe form of schizophrenia. Valacyclovir was not efficacious in the study, perhaps because the herpes virus was in the dormant, non-activated state and therefore non-responsive to valacyclovir effects. ClinicalTrials.gov Identifier: NCT02008773.


Subject(s)
Antiviral Agents/therapeutic use , Herpes Simplex/drug therapy , Herpesvirus 1, Human , Schizophrenia/drug therapy , Valacyclovir/therapeutic use , Adolescent , Adult , Cognition , Double-Blind Method , Female , Herpes Simplex/complications , Humans , Male , Memory , Quality of Life , Schizophrenia/complications , Schizophrenia/virology , Treatment Outcome , United States , Young Adult
4.
Neuroimage Clin ; 20: 543-555, 2018.
Article in English | MEDLINE | ID: mdl-30175041

ABSTRACT

Self-regulation of brain activation using real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) is an emerging approach for treating mood and anxiety disorders. The effect of neurofeedback training on resting-state functional connectivity warrants investigation as changes in spontaneous brain activation could reflect the association between sustained symptom relief and brain alteration. We investigated the effect of amygdala-focused rtfMRI-nf training on resting-state functional connectivity in combat veterans with and without posttraumatic stress disorder (PTSD) who were trained to increase a feedback signal reflecting left amygdala activity while recalling positive autobiographical memories (Zotev et al., 2018). The analysis was performed in three stages: i) first, we investigated the connectivity in the left amygdala region; ii) next, we focused on the abnormal resting-state functional connectivity identified in our previous analysis of this data (Misaki et al., 2018); and iii) finally, we performed a novel data-driven longitudinal connectome-wide analysis. We introduced a longitudinal multivariate distance matrix regression (MDMR) analysis to comprehensively examine neurofeedback training effects beyond those associated with abnormal baseline connectivity. These comprehensive exploratory analyses suggested that abnormal resting-state connectivity for combat veterans with PTSD was partly normalized after the training. This included hypoconnectivities between the left amygdala and the left ventrolateral prefrontal cortex (vlPFC) and between the supplementary motor area (SMA) and the dorsal anterior cingulate cortex (dACC). The increase of SMA-dACC connectivity was associated with PTSD symptom reduction. Longitudinal MDMR analysis found a connectivity change between the precuneus and the left superior frontal cortex. The connectivity increase was associated with a decrease in hyperarousal symptoms. The abnormal connectivity for combat veterans without PTSD - such as hypoconnectivity in the precuneus with a superior frontal region and hyperconnectivity in the posterior insula with several regions - could also be normalized after the training. These results suggested that the rtfMRI-nf training effect was not limited to a feedback target region and symptom relief could be mediated by brain modulation in several regions other than in a feedback target area. While further confirmatory research is needed, the results may provide valuable insight into treatment effects on the whole brain resting-state connectivity.


Subject(s)
Amygdala/diagnostic imaging , Combat Disorders/diagnostic imaging , Connectome/methods , Magnetic Resonance Imaging/methods , Neurofeedback/methods , Stress Disorders, Post-Traumatic/diagnostic imaging , Veterans/psychology , Adult , Amygdala/physiology , Combat Disorders/psychology , Combat Disorders/therapy , Computer Systems , Humans , Longitudinal Studies , Male , Neurofeedback/physiology , Stress Disorders, Post-Traumatic/psychology , Stress Disorders, Post-Traumatic/therapy
5.
Neuroimage Clin ; 19: 106-121, 2018.
Article in English | MEDLINE | ID: mdl-30035008

ABSTRACT

Posttraumatic stress disorder (PTSD) is a chronic and disabling neuropsychiatric disorder characterized by insufficient top-down modulation of the amygdala activity by the prefrontal cortex. Real-time fMRI neurofeedback (rtfMRI-nf) is an emerging method with potential for modifying the amygdala-prefrontal interactions. We report the first controlled emotion self-regulation study in veterans with combat-related PTSD utilizing rtfMRI-nf of the amygdala activity. PTSD patients in the experimental group (EG, n = 20) learned to upregulate blood­oxygenation-level-dependent (BOLD) activity of the left amygdala (LA) using the rtfMRI-nf during a happy emotion induction task. PTSD patients in the control group (CG, n = 11) were provided with a sham rtfMRI-nf. The study included three rtfMRI-nf training sessions, and EEG recordings were performed simultaneously with fMRI. PTSD severity was assessed before and after the training using the Clinician-Administered PTSD Scale (CAPS). The EG participants who completed the study showed a significant reduction in total CAPS ratings, including significant reductions in avoidance and hyperarousal symptoms. They also exhibited a significant reduction in comorbid depression severity. Overall, 80% of the EG participants demonstrated clinically meaningful reductions in CAPS ratings, compared to 38% in the CG. No significant difference in the CAPS rating changes was observed between the groups. During the first rtfMRI-nf session, functional connectivity of the LA with the orbitofrontal cortex (OFC) and the dorsolateral prefrontal cortex (DLPFC) was progressively enhanced, and this enhancement significantly and positively correlated with the initial CAPS ratings. Left-lateralized enhancement in upper alpha EEG coherence also exhibited a significant positive correlation with the initial CAPS. Reduction in PTSD severity between the first and last rtfMRI-nf sessions significantly correlated with enhancement in functional connectivity between the LA and the left DLPFC. Our results demonstrate that the rtfMRI-nf of the amygdala activity has the potential to correct the amygdala-prefrontal functional connectivity deficiencies specific to PTSD.


Subject(s)
Amygdala/physiopathology , Depressive Disorder, Major/physiopathology , Magnetic Resonance Imaging , Neurofeedback/physiology , Stress Disorders, Post-Traumatic/physiopathology , Adult , Brain Mapping/methods , Depressive Disorder, Major/pathology , Emotions/physiology , Female , Humans , Image Processing, Computer-Assisted/methods , Learning/physiology , Magnetic Resonance Imaging/methods , Male , Middle Aged , Stress Disorders, Post-Traumatic/pathology
6.
Neuroimage Clin ; 19: 260-270, 2018.
Article in English | MEDLINE | ID: mdl-30035020

ABSTRACT

Posttraumatic stress disorder (PTSD) is a trauma- and stressor-related disorder that may emerge following a traumatic event. Neuroimaging studies have shown evidence of functional abnormality in many brain regions and systems affected by PTSD. Exaggerated threat detection associated with abnormalities in the salience network, as well as abnormalities in executive functions involved in emotions regulations, self-referencing and context evaluation processing are broadly reported in PTSD. Here we aimed to investigate the behavior and dynamic properties of fMRI resting state networks in combat-related PTSD, using a novel, multimodal imaging approach. Simultaneous electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) was employed to measure neurobiological brain activity among 36 veterans with combat-related PTSD and 20 combat-exposed veterans without PTSD. Based on the recently established method of measuring temporal-independent EEG microstates, we developed a novel strategy to integrate EEG and fMRI by quantifying the fast temporal dynamics associated with the resting state networks. We found distinctive occurrence rates of microstates associated with the dorsal default mode network and salience networks in the PTSD group as compared with control. Furthermore, the occurrence rate of the microstate for the dorsal default mode network was positively correlated with PTSD severity, whereas the occurrence rate of the microstate for the anterior salience network was negatively correlated with hedonic tone reported by participants with PTSD. Our findings reveal a novel aspect of abnormal network dynamics in combat-related PTSD and contribute to a better understanding of the pathophysiology of the disorder. Simultaneous EEG and fMRI will be a valuable tool in continuing to study the neurobiology underlying PTSD.


Subject(s)
Brain/physiopathology , Nerve Net/physiopathology , Stress Disorders, Post-Traumatic/physiopathology , Adult , Brain/diagnostic imaging , Brain Mapping/methods , Connectome , Electroencephalography , Humans , Magnetic Resonance Imaging , Male , Multimodal Imaging , Nerve Net/diagnostic imaging , Stress Disorders, Post-Traumatic/diagnostic imaging , Veterans , Young Adult
7.
Neuroimage Clin ; 17: 285-296, 2018.
Article in English | MEDLINE | ID: mdl-29527476

ABSTRACT

Altered resting-state functional connectivity in posttraumatic stress disorder (PTSD) suggests neuropathology of the disorder. While seed-based fMRI connectivity analysis is often used for the studies, such analysis requires defining a seed location a priori, which restricts search scope and could bias findings toward presupposed areas. Recently, a comprehensive exploratory voxel-wise connectivity analysis, the connectome-wide association approach, has been introduced using multivariate distance matrix regression (MDMR) for resting-state functional connectivity analysis. The current study performed a connectome-wide investigation of resting-state functional connectivity for war veterans with and without PTSD compared to non-trauma-exposed healthy controls using MDMR. Thirty-five male combat veterans with PTSD (unmedicated), 18 male combat veterans without PTSD (veterans control, VC), and 28 age-matched non-trauma-exposed healthy males (NC) participated in a resting-state fMRI scan. MDMR analysis was used to identify between-groups differences in regions with altered connectivity. The identified regions were used as a seed for post-hoc functional connectivity analysis. The analysis revealed that PTSD patients had hypoconnectivity between the left lateral prefrontal regions and the salience network regions as well as hypoconnectivity between the parahippocampal gyrus and the visual cortex areas. Connectivity between the ventromedial prefrontal cortex and the middle frontal gyrus and between the parahippocampal gyrus and the anterior insula were negatively correlated with PTSD symptom severity. VC subjects also had altered functional connectivity compared to NC, including increased connectivity between the posterior insula and several brain regions and decreased connectivity between the precuneus region and several other brain areas. The decreased connectivity between the lateral prefrontal regions and the salience network regions in PTSD was consistent with previous reports that indicated lowered emotion-regulation function in these regions. The decreased connectivity between the parahippocampal gyrus and visual cortex supported the dual representation theory of PTSD, which suggests dissociation between sensory and contextual memory representations in PTSD. The theory also supposes that the precuneus is a region that triggers retrieval of sensory memory of traumatic events. The decreased connectivity at the precuneus for VC might be associated with suppressing such a process.


Subject(s)
Combat Disorders/complications , Connectome/methods , Rest , Stress Disorders, Post-Traumatic/diagnostic imaging , Stress Disorders, Post-Traumatic/etiology , Adult , Case-Control Studies , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Oxygen/blood , Trauma Severity Indices , Veterans , Young Adult
8.
Transl Psychiatry ; 8(1): 27, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29362444

ABSTRACT

Given evidence of chronic inflammation in bipolar disorder (BD), we tested the efficacy of aspirin and minocycline as augmentation therapy for bipolar depression. Ninety-nine depressed outpatients with BD were enrolled in a 6 week, double-blind, placebo-controlled trial, and randomized to one of four groups: active minocycline (100 mg b.i.d.) + active aspirin (81 mg b.i.d.) (M + A); active minocycline + placebo aspirin (M + P); placebo-minocycline + active aspirin (A + P); and placebo-minocycline + placebo aspirin (P + P). A blinded interim analysis mid-way through the study led to the dropping of the M + P and A + P arms from further enrollment giving numbers per group who were included in the final analysis of: 30 (M + A), 18 (M + P), 19 (A + P), and 28 (P + P). When the study started, there were three primary outcome measures. Based on the results of the interim analysis, the primary outcome variable, response to treatment as defined by >50% decrease in Montgomery-Äsberg Depression Rating Scale (MADRS) score was maintained. The other two (i.e., the change in mean MADRS score from baseline to end of study and the remission rate, with remission being defined as a score of <11 on the MADRS) were reduced to exploratory outcome measures because the interim analysis indicated that the study was adequately powered to test differences in response rate but not the mean change in MADRS scores or remission rates. CRP and IL-6 were assayed to measure inflammation. Urinary thromboxane B2 (11-D-TXB2) concentrations, which were significantly increased at baseline in the combined BD sample (n = 90) vs. a healthy control group (n = 27), served as an indirect marker of cyclooxygenase (COX) activity. In a two-group analysis, the M + A group showed a greater response rate than the P + P group (p(one-tailed) = 0.034, OR = 2.93, NNT = 4.7). When all four arms were included in the analysis, there was a main effect of aspirin on treatment response that was driven by both the M + A and the A + P groups (p(two-tailed) = 0.019, OR = 3.67, NNT = 4.0). Additionally, there was a significant 3-way interaction between aspirin, minocycline, and IL-6, indicating that response to minocycline was significantly greater in participants in the M + P group with higher IL-6 concentrations. Further, participants in the M + P group who responded to treatment had significantly greater decreases in IL-6 levels between baseline and visit 7 vs. non-responders. Regarding the exploratory outcomes, there was a main effect for aspirin on the remission rate (χ12 = 4.14, p(2t) = 0.04, OR = 2.52, NNT = 8.0). There was no significant main effect of aspirin or minocycline on the mean change in MADRS score across visits. Aspirin and minocycline may be efficacious adjunctive treatments for bipolar depression. Given their potential import, additional studies to confirm and extend these findings are warranted.


Subject(s)
Antidepressive Agents/therapeutic use , Aspirin/therapeutic use , Bipolar Disorder/drug therapy , Minocycline/therapeutic use , Adult , C-Reactive Protein/analysis , Dose-Response Relationship, Drug , Double-Blind Method , Drug Therapy, Combination , Female , Humans , Interleukin-6/blood , Logistic Models , Male , Middle Aged , Psychiatric Status Rating Scales , Treatment Outcome
9.
Brain Behav Immun ; 67: 59-64, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28867283

ABSTRACT

The incidence of depression is approximately 2-fold greater in women than men but the biological mechanisms underlying this phenomenon remain unclear. One potential mechanism that has been understudied is immune function, which is modulated by sex hormones and differs considerably between males and females. The immune-regulating kynurenine pathway previously has been implicated in the pathogenesis of mood disorders. In particular, a decreased ratio of neuroprotective (kynurenic acid; KynA) to neurotoxic (3-hydroxykynurenine; 3HK and quinolinic acid; QA) kynurenine pathway metabolites has been reported in several mood disorder subtypes. Yet there is a paucity of research investigating sex differences in the kynurenine pathway in the context of depression. Similarly, oral contraceptive (OC) use has been shown to be a risk factor for depression but to our knowledge this epidemiological relationship has not been considered within the framework of immune dysfunction. Here, we compared the concentrations of c-reactive protein (CRP) and kynurenine pathway metabolites in a combined sample of subjects with major depressive disorder (MDD), bipolar disorder (BD), and healthy controls (HC) comprising 130 men and 350 women. CRP was measured in a CLIA-certified hospital laboratory. Kynurenine metabolites were quantified using high performance liquid chromatography with tandem mass spectrometry. Estradiol and progesterone were quantified with the Mesoscale Discovery (MSD) platform. After controlling for diagnosis, age, sex, BMI, analysis batch, and self-reported childhood trauma we found that women had significantly lower KynA/3HK and KynA/QA ratios than men, and that these results were driven by a decrease in KynA. There was no significant difference between males and females in the concentration of CRP. Further, women taking OC showed significantly higher levels of CRP and lower ratios of KynA/3HK and KynA/QA compared with women on no form of contraception. Moreover, among women using OC, progesterone concentrations were positively correlated with KynA, KynA/3HK, and KynA/QA. Although preliminary, our results indicate that on average, healthy women show the same pattern of kynurenine pathway metabolism as that observed in subjects with depression. This finding raises the possibility that a reduction in KynA concentrations in women may constitute a vulnerability factor that partly explains the higher incidence of depression in females. Further, the significant association between OC use and reduced KynA as well as increased CRP, could conceivably partially account for the epidemiological association between OC use and depression. Nonetheless, because of the cross-sectional nature of this study, these hypotheses need to be more rigorously tested with longitudinal designs and/or large epidemiological studies.


Subject(s)
Bipolar Disorder/blood , Contraceptives, Oral, Hormonal/administration & dosage , Depressive Disorder, Major/blood , Kynurenic Acid/metabolism , Sex Characteristics , Adult , Bipolar Disorder/immunology , C-Reactive Protein/metabolism , Cross-Sectional Studies , Depressive Disorder, Major/immunology , Female , Humans , Kynurenic Acid/blood , Male
10.
Brain Behav Immun ; 53: 39-48, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26546831

ABSTRACT

Reductions in gray matter volume of the medial prefrontal cortex (mPFC), especially the rostral and subgenual anterior cingulate cortex (rACC, sgACC) are a widely reported finding in major depressive disorder (MDD). Inflammatory mediators, which are elevated in a subgroup of patients with MDD, activate the kynurenine metabolic pathway and increase production of neuroactive metabolites such as kynurenic acid (KynA), 3-hydroxykynurenine (3HK) and quinolinic acid (QA) which influence neuroplasticity. It is not known whether the alterations in brain structure and function observed in major depressive disorders are due to the direct effect of inflammatory mediators or the effects of neurotoxic kynurenine metabolites. Here, using partial posterior predictive distribution mediation analysis, we tested whether the serum concentrations of kynurenine pathway metabolites mediated reductions in cortical thickness in mPFC regions in MDD. Further, we tested whether any association between C-reactive protein (CRP) and cortical thickness would be mediated by kynurenine pathway metabolites. Seventy-three unmedicated subjects who met DSM-IV-TR criteria for MDD and 91 healthy controls (HC) completed MRI scanning using a pulse sequence optimized for tissue contrast resolution. Automated cortical parcellation was performed using the PALS-B12 Brodmann area atlas as implemented in FreeSurfer in order to compare the cortical thickness and cortical area of six PFC regions: Brodmann areas (BA) 9, 10, 11, 24, 25, and 32. Serum concentrations of kynurenine pathway metabolites were determined by high performance liquid chromatography (HPLC) with tandem mass spectrometry (MS/MS) detection, while high-sensitivity CRP concentration was measured immunoturbidimetrically. Compared with HCs, the MDD group showed a reduction in cortical thickness of the right BA24 (p<0.01) and BA32 (p<0.05) regions and MDD patients with a greater number of depressive episodes displayed thinner cortex in BA32 (p<0.05). Consistent with our previous findings in an overlapping sample, the KynA/3HK ratio and the log KynA/QA were reduced in the MDD group relative to the HC group (p's<0.05) and symptoms of anhedonia were negatively correlated with log KynA/QA in the MDD group (p<0.05). Both KynA/3HK and log KynA/QA at least partially mediated the relationship between diagnosis and cortical thickness of right BA32 (p's<0.05). CRP was inversely associated with BA32 thickness (p<0.01) and KynA/3HK partially mediated the relationship between CRP and the thickness of right BA32 (p<0.05). The results raise the possibility that the relative imbalance between KynA and neurotoxic kynurenine metabolites may partially explain the reductions in mPFC thickness observed in MDD, and further that these changes are more strongly linked to the putative effects of neuroactive kynurenine metabolites than those of inflammatory mediators.


Subject(s)
Depressive Disorder, Major/metabolism , Depressive Disorder, Major/pathology , Kynurenine/metabolism , Prefrontal Cortex/metabolism , Prefrontal Cortex/pathology , Adult , Brain/metabolism , Brain/pathology , C-Reactive Protein/metabolism , Case-Control Studies , Cerebral Cortex/metabolism , Cerebral Cortex/pathology , Depressive Disorder, Major/blood , Depressive Disorder, Major/diagnostic imaging , Female , Gray Matter/metabolism , Gray Matter/pathology , Humans , Kynurenic Acid/blood , Kynurenic Acid/metabolism , Kynurenine/analogs & derivatives , Kynurenine/blood , Magnetic Resonance Imaging , Male , Neurotoxicity Syndromes/blood , Neurotoxicity Syndromes/metabolism , Neurotoxicity Syndromes/pathology , Prefrontal Cortex/diagnostic imaging , Quinolinic Acid/blood , Quinolinic Acid/metabolism , Tryptophan/blood
11.
Psychoneuroendocrinology ; 62: 54-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26232650

ABSTRACT

Inflammation, which may be present in a subgroup of individuals with major depressive disorder (MDD), activates the kynurenine metabolic pathway to produce kynurenine metabolites kynurenic acid (KynA) and quinolinic acid (QA). We have previously reported an association between the ratio of KynA to QA and hippocampal volume in MDD. In animals, inflammation leads to deficits in incentive motivation. Given the central role of the nucleus accumbens (NAcc) and other regions of the striatum in motivated behavior, reward processing, and anhedonia, we hypothesized that abnormalities in the concentrations of kynurenine pathway metabolites would be associated with striatal volumes. As previously reported, after controlling for relevant confounds, the KynA/QA ratio was reduced in the serum of unmedicated patients with MDD (n=53) versus healthy controls (HC, n=47) and there was a non-significant trend in the correlation between KynA/QA and severity of anhedonia (r=-0.27, p<0.1). There was no significant difference between the MDD and HC groups in any of the individual kynurenine metabolites or volume of the striatum defined as the sum of the volumes of the NAcc, caudate, and putamen. After regressing out the effects of sex, analysis batch, and supratentorial volume, the kynurenine concentration and the ratio of kynurenine to tryptophan were inversely associated with striatal volumes in the MDD sample (p<0.05, uncorrected). Further, striatal volume was correlated with the items, "concentration difficulties", "lassitude", and "pessimism" from the Montgomery-Asberg Depression Rating Scale. Our results raise the possibility that activation of the kynurenine pathway is a marker of an inflammatory process that leads to reductions in striatal volume. However, unlike the hippocampus, the association does not appear to be mediated by the relative balance between KynA and QA.


Subject(s)
Corpus Striatum/pathology , Depressive Disorder, Major/blood , Depressive Disorder, Major/pathology , Kynurenic Acid/blood , Kynurenine/metabolism , Quinolinic Acid/blood , Adult , Anhedonia , Biomarkers/blood , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Organ Size , Young Adult
12.
Brain Behav Immun ; 46: 55-9, 2015 May.
Article in English | MEDLINE | ID: mdl-25686798

ABSTRACT

Low-grade inflammation is characteristic of a subgroup of currently depressed patients with major depressive disorder (dMDD). It may lead to the activation of the kynurenine-metabolic pathway and the increased synthesis of potentially neurotoxic metabolites such as 3-hydroxykynurenine (3HK) and quinolinic acid (QA), relative to kynurenic acid (KynA). Nevertheless, few studies have examined whether abnormalities in this pathway are present in remitted patients with MDD (rMDD). Here we compared the serum concentrations of kynurenine metabolites, measured using high performance liquid chromatography with tandem mass spectrometry, across 49 unmedicated subjects meeting DSM-IV-TR criteria for MDD, 21 unmedicated subjects meeting DSM-IV-TR criteria for rMDD, and 58 healthy controls (HCs). There was no significant group difference in the concentrations of the individual kynurenine metabolites, however both the dMDD group and the rMDD group showed a reduction in KynA/QA, compared with the HCs. Further, there was an inverse correlation between KynA/QA and anhedonia in the dMDD group, while in the rMDD group, there was a negative correlation between lifetime number of depressive episodes and KynA/QA as well as a positive correlation between the number of months in remission and KynA/QA. Our results raise the possibility that a persistent abnormality exists within the kynurenine metabolic pathway in MDD that conceivably may worsen with additional depressive episodes. The question of whether persistent abnormalities in kynurenine metabolism predispose to depression and/or relapse in remitted individuals remains unresolved.


Subject(s)
Depressive Disorder, Major/metabolism , Kynurenic Acid/metabolism , Quinolinic Acid/blood , Adolescent , Adult , Chromatography, Liquid , Depressive Disorder, Major/blood , Female , Humans , Male , Middle Aged , Tandem Mass Spectrometry , Young Adult
13.
Neuropsychopharmacology ; 40(2): 463-71, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25074636

ABSTRACT

Inflammation-related changes in the concentrations of kynurenine pathway metabolites occur in depression secondary to medical conditions but are not firmly established in primary mood disorders. Reductions in hippocampal and amygdalar volume that putatively reflect dendritic atrophy are widely reported in major depressive disorder (MDD). Here we tested whether the relative serum concentrations of putatively neuroprotective (kynurenic acid (KA)) and neurotoxic (3-hydroxykynurenine (3HK) and quinolinic acid (QA)) kynurenine pathway metabolites were altered in primary MDD and whether these metabolites were associated with hippocampal and amygdalar volume. A total of 29 moderately to severely depressed unmedicated subjects who met DSM-IV criteria for MDD and 20 healthy controls (HCs) completed a structural MRI scan and provided blood sample for kynurenine metabolite analysis, performed using high-performance liquid chromatography with tandem mass spectrometry. Cytokine concentrations were measured with ELISA and gray matter volumes were measured with the automated segmentation software, FreeSurfer. An a priori defined variable of interest, the KA/QA ratio, a putative neuroprotective index, trended lower in the MDD versus the HC group and correlated negatively with anhedonia but positively with the total hippocampal and amygdala volume in the MDD subjects. The post hoc data reduction methods yielded three principal components. Component 1 (interleukin-1 receptor antagonist, QA, and kynurenine) was significantly elevated in MDD participants versus the HCs, whereas component 2 (KA, tryptophan, and kynurenine) was positively correlated with hippocampal and amygdala volume within the MDD group. Our results raise the possibility that an immune-related imbalance in the relative metabolism of KA and QA predisposes to depression-associated dendritic atrophy and anhedonia.


Subject(s)
Amygdala/pathology , Depressive Disorder, Major/blood , Depressive Disorder, Major/pathology , Hippocampus/pathology , Kynurenic Acid/blood , Adult , Anhedonia , Brain-Derived Neurotrophic Factor/blood , C-Reactive Protein/metabolism , Female , Gray Matter/pathology , Humans , Kynurenine/analogs & derivatives , Kynurenine/blood , Male , Organ Size , Psychiatric Status Rating Scales , Quinolinic Acid/blood , Receptors, Interleukin-1/blood , Signal Transduction , Tryptophan/blood
14.
Psychoneuroendocrinology ; 52: 200-11, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25486577

ABSTRACT

Inflammation-related changes in the concentrations of kynurenine-pathway metabolites occur in depression secondary to medical conditions but have not been well characterized in primary bipolar disorder (BD), with contradictory results potentially attributable to the presence or absence of psychosis and/or medication effects. In contrast, reductions in hippocampal and amygdalar volume that theoretically reflect dendritic atrophy occurring in the context of a neurotoxic process are commonly reported in unmedicated BD patients. Here we tested whether the concentrations of putatively neuroprotective (kynurenic acid, KynA) and neurotoxic (3-hydroxy-kynurenine, 3HK and quinolinic acid, QA) kynurenine-pathway metabolites were altered in primary BD and whether these metabolites were associated with hippocampal and amygdalar volume. Twenty-five moderately-to-severely depressed unmedicated subjects and 38 moderately-to-severely depressed medicated subjects who met DSM-IV-TR criteria for BD, as well as 48 healthy controls (HCs) completed a structural MRI scan and provided a blood sample for kynurenine metabolite analysis, performed using high performance liquid chromatography with tandem mass spectrometry. Gray matter volumes were measured with the automated segmentation software, FreeSurfer. A putative neuroprotective index, KynA/QA, was significantly lower in the BD subjects relative to the HCs, a finding that was unrelated to current treatment with medication or a prior history of psychosis. Further, another putative neuroprotective index, KynA/3HK was positively associated with hippocampal volume in the BD group after controlling for age, sex, body mass index (BMI), and intracranial volume (ICV). Kyn/3HK was significantly associated with total amygdalar volume in the BD group, but after controlling for age, sex, BMI, but not ICV, this association was reduced to a trend. In addition, Kyn/3HK was positively associated with amygdalar volume in the HCs although the association was no longer significant after accounting for the effects of age, sex, and BMI. The results raise the possibility that BD-associated abnormalities in kynurenine metabolism may impact the structure of the hippocampus and amygdala, highlighting a pathway through which inflammation may exert neuropathological effects in the context of depression.


Subject(s)
Amygdala/pathology , Bipolar Disorder/metabolism , Bipolar Disorder/pathology , Hippocampus/pathology , Kynurenic Acid/blood , Kynurenine/analogs & derivatives , Kynurenine/metabolism , Quinolinic Acid/blood , Adult , Female , Humans , Kynurenine/blood , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...