Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 24(12)2023 Jun 11.
Article in English | MEDLINE | ID: mdl-37373153

ABSTRACT

Environmental and occupational exposure to hexavalent chromium, Cr(VI), causes female reproductive failures and infertility. Cr(VI) is used in more than 50 industries and is a group A carcinogen, mutagenic and teratogenic, and a male and female reproductive toxicant. Our previous findings indicate that Cr(VI) causes follicular atresia, trophoblast cell apoptosis, and mitochondrial dysfunction in metaphase II (MII) oocytes. However, the integrated molecular mechanism of Cr(VI)-induced oocyte defects is not understood. The current study investigates the mechanism of Cr(VI) in causing meiotic disruption of MII oocytes, leading to oocyte incompetence in superovulated rats. Postnatal day (PND) 22 rats were treated with potassium dichromate (1 and 5 ppm) in drinking water from PND 22-29 and superovulated. MII oocytes were analyzed by immunofluorescence, and images were captured by confocal microscopy and quantified by Image-Pro Plus software, Version 10.0.5. Our data showed that Cr(VI) increased microtubule misalignment (~9 fold), led to missegregation of chromosomes and bulged and folded actin caps, increased oxidative DNA (~3 fold) and protein (~9-12 fold) damage, and increased DNA double-strand breaks (~5-10 fold) and DNA repair protein RAD51 (~3-6 fold). Cr(VI) also induced incomplete cytokinesis and delayed polar body extrusion. Our study indicates that exposure to environmentally relevant doses of Cr(VI) caused severe DNA damage, distorted oocyte cytoskeletal proteins, and caused oxidative DNA and protein damage, resulting in developmental arrest in MII oocytes.


Subject(s)
Chromium , Follicular Atresia , Rats , Female , Animals , Male , Chromium/toxicity , Oxidative Stress , Oocytes , DNA Damage , Microtubules , Chromosomes
2.
Toxicol Rep ; 9: 219-229, 2022.
Article in English | MEDLINE | ID: mdl-36518455

ABSTRACT

Previous studies from our laboratory showed that prenatal exposure to hexavalent chromium, Cr(VI), caused premature ovarian failure and decreased pregnancy rates and litter size. Exposure to the endocrine disrupting chemicals (EDCs) can cause X-chromosome aneuploidy of the oocytes, increasing chromosome missegregation and risk of infertility, autoimmune diseases, cancers, and various genetic disorders. Cr(VI) is an EDC that is widely used in numerous industries. Environmental exposure to Cr(VI) caused detrimental reproductive effects in women and health effects in infants from California. Women with occupational Cr(VI) exposure experienced infertility, pregnancy loss, spontaneous abortion, and stillbirth. However, the adverse effects of Cr(VI) on oocyte development and quality have not been reported. Mitochondrial membrane potential and function are the critical determinants of oocyte quality in natural pregnancies and successful assisted reproductive techniques. The cytoskeletal machinery of the oocytes orchestrates the meiotic division of the oocytes, whereas cortical granules (CGs) prevent polyspermy. Therefore, the objective of the current study was to examine whether the mechanism by which Cr(VI) compromises oocyte quality and morphology is by altering cytoskeleton dynamics and mitochondrial function of the metaphase II (MII) oocytes. Rats were treated with environmentally relevant doses of Cr(VI) (1 and 5 ppm potassium dichromate) in drinking water from postnatal day (PND) 22-28, followed by superovulation and retrieval of MII oocytes. The data indicate that Cr(VI) exposure disrupted F-actin structure and distribution pattern, compromised mitochondrial function, altered CGs distribution, increased dysmorphic and degenerated oocytes, delayed first polar body extrusion, and caused infertility.

3.
Reprod Toxicol ; 109: 121-134, 2022 04.
Article in English | MEDLINE | ID: mdl-35307491

ABSTRACT

Environmental contamination with hexavalent chromium, Cr(VI), has been increasing in the United States as well as in developing countries. Exposure to Cr(VI) predisposes the human population to various diseases, including cancer, infertility, and developmental problems in children. Previous findings from our laboratory reported that prenatal exposure to Cr(VI) caused premature ovarian failure through p53-mediated mechanisms. Sirtuin 1 (SIRT1) is an NAD+ -dependent histone deacetylase class III. SIRT1 deacetylates several histones and non-histone proteins such as p53 and NFkB. The current study determines a role for the SIRT1-p53 network in apoptosis induced by Cr(VI) in the ovary and establishes physical interaction between SIRT1 and p53. Adult pregnant dams were given regular drinking water or Cr(VI) (10 ppm potassium dichromate in drinking water, ad libitum), and treated with SIRT1 inhibitor, EX-527 (50 mg/kg body weight, i.p.,), during 9.5 - 14.5 days post-coitum. On postnatal day-1, ovaries from F1 offspring were collected for various analyses. Results indicated that Cr(VI) increased germ cell and somatic cell apoptosis, upregulated acetyl-p53, activated the apoptotic pathway, and inhibited cell survival pathways. Cr(VI) decreased acetyl-p53-SIRT1 co-localization in the ovary. In an immortalized rat granulosa cell line SIGC, Cr(VI) inhibited the physical interaction between SIRT1 and acetyl-p53 by altering the p53:SIRT1 ratio. EX-527 exacerbated Cr(VI)-induced mechanisms. The current study shows a novel mechanism for Cr(VI)-induced apoptosis in the ovary, mediated through the p53-SIRT1 network, suggesting that targeting the p53 pathway may be an ideal approach to rescue ovaries from Cr(VI)-induced apoptosis.


Subject(s)
Ovary , Sirtuin 1 , Animals , Apoptosis , Chromium/toxicity , Female , Ovary/metabolism , Pregnancy , Rats , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/metabolism
4.
Reprod Fertil Dev ; 32(5): 474-483, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31972126

ABSTRACT

This study compared the morphometric, subcellular characteristics, in vitro fertilisation (IVF) and embryonic developmental potential of metaphase II (MII) mouse oocytes obtained from females superovulated with either anti-inhibin serum-human chorionic gonadotrophin (AIS-hCG) or pregnant mare serum gonadotrophin (PMSG)-hCG. The oocyte's quantity, quality, zona pellucida (ZP) thickness, perivitelline space (PVS), diameter, microtubules, F-actin, cortical granules (CGs) and mitochondrial distribution were determined. Superovulation using AIS-hCG resulted in a higher numbers of oocyte/donor compared with PMSG-hCG (P=0.002). There was no difference in morphologically normal and abnormal oocytes between AIS-hCG and PMSG-hCG (P=0.425 and P=0.194, respectively). The morphometric measurements showed no difference in oocyte diameter between AIS-hCG and PMSG-hCG (P=0.289). However, the thickness of the ZP of oocytes from AIS-hCG females was decreased compared with PMSG-hCG (P<0.001). The PVS of oocytes from the AIS-hCG was larger than with PMSG-hCG (P<0.001). The microtubules of oocytes from both AIS-hCG and PMSG-hCG were normal, although there was an increased fluorescence intensity in the AIS-hCG oocytes (P<0.001). The F-actin and CGs distribution in oocytes from both AIS-hCG and PMSG-hCG were similar (P=0.330 and P=0.13, respectively). Although the oocytes from PMSG-hCG females had homogenously distributed mitochondria, AIS-hCG oocytes showed more peripheral distribution with no differences in fluorescence intensity (P=0.137). The blastocyst development rates after IVF with fresh sperm showed no difference between AIS-hCG and PMSG-hCG (P=0.235). These data suggested that AIS-hCG superovulation produces high numbers of morphologically normal oocytes that also possess normal subcellular structures, good morphological characteristics and had high invitro embryonic developmental potential.


Subject(s)
Blastocyst/physiology , Fertility Agents, Female/pharmacology , Fertilization in Vitro , Gonadotropins, Equine/pharmacology , Immune Sera/pharmacology , Inhibins/antagonists & inhibitors , Oocytes/drug effects , Ovulation/drug effects , Superovulation , Animals , Chorionic Gonadotropin/pharmacology , Embryo Culture Techniques , Female , Inhibins/immunology , Mice, Inbred C57BL , Mice, Inbred ICR , Oocyte Retrieval , Oocytes/immunology , Pregnancy
5.
Mol Reprod Dev ; 86(7): 825-834, 2019 07.
Article in English | MEDLINE | ID: mdl-31087431

ABSTRACT

Generation of high quality mouse metaphase II oocytes is an integral part for efficient in vitro fertilization (IVF), and subsequent embryo production for reproductive studies and genome banking. The main objectives of this study were to investigate the impact of various euthanasia methods on IVF, embryo development, and subcellular structures of MII mouse oocytes. Following superovulation regimen, female mice were euthanized by high flow CO2 (H CO2 ), low flow CO2 (L CO2 ), or cervical dislocation (CD). The MII oocytes obtained from these mice were evaluated for subcellular integrity by assessing their cortical granules and F-actin. Furthermore, fertilization and subsequent embryonic development competence up to blastocyst stage were also evaluated in vitro. The oocytes collected from females euthanized by CD resulted in significantly higher two-cell development rates (p = 0.028) and subsequently lead to in higher embryo development rates (p = 0.027) compared with oocytes from females euthanized by L CO2 . The cortical granule integrity analysis revealed significantly higher rate of premature cortical granules exocytosis (PCGE) for L CO2 group compared with CD and H CO2 groups (p < 0.001). These data collectively suggest that CO2 associated PCGE during euthanasia procedure is the main cause of decreased IVF rates and CD is the optimal euthanasia method for the purpose of obtaining good quality MII oocytes for mouse IVF and other reproductive studies.


Subject(s)
Carbon Dioxide/administration & dosage , Carbon Dioxide/pharmacology , Cell Degranulation/drug effects , Embryonic Development/drug effects , Euthanasia, Animal/methods , Fertilization in Vitro/drug effects , Oocytes/physiology , Actins/metabolism , Administration, Inhalation , Animals , Cervical Cord/surgery , Female , Male , Metaphase/drug effects , Mice , Mice, Inbred C57BL , Mice, Inbred ICR , Pregnancy , Superovulation
SELECTION OF CITATIONS
SEARCH DETAIL
...