Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 11: 1160012, 2023.
Article in English | MEDLINE | ID: mdl-37609112

ABSTRACT

The two major scale-up criteria in continuously stirred bioreactors are 1) constant aerated power input per volume (Pg/Vl), and 2) the volumetric O2 mass transfer coefficient (kla). However, Pg/Vl is only influenced by the stirrer geometry, stirrer speed, aeration and working volume, while the kla is additionally affected by physiochemical properties of the medium (temperature, pH, salt content, etc.), sparging of gas and also by the bioreactor design. The extremophilic archaeon Sulfolobus acidocaldarius, thriving at 75°C and pH 3.0, has the potential for many biotechnological applications. However, previous studies imply that the family Sulfolobaceae might be affected by higher oxygen concentration in the headspace (>26%). Hence, adequate oxygen supply without being toxic has to be ensured throughout the different scales. In this study, the scale-up criteria Pg/Vl and kla were analyzed and compared in a 2 L chemostat cultivation of S. acidocaldarius on a defined growth medium at 75°C and a pH value of 3.0, using two different types of spargers at the same aerated power input. The scale-up criterion kLa, ensuring a high specific growth rate as well as viability, was then used for scaleup to 20 L and 200 L. By maintaining a constant kla comparable dry cell weight, specific growth rate, specific substrate uptake rates and viability were observed between all investigated scales. This procedure harbors the potential for further scale-up to industrial size bioreactors.

2.
AMB Express ; 12(1): 107, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35947320

ABSTRACT

Determination of the viability, ratio of dead and live cell populations, of Sulfolobus acidocaldarius is still being done by tedious and material-intensive plating assays that can only provide time-lagged results. Although S. acidocaldarius, an extremophilic Archaeon thriving at 75 °C and pH 3.0, and related species harbor great potential for the exploitation as production hosts and biocatalysts in biotechnological applications, no industrial processes have been established yet. One hindrance is that during development and scaling of industrial bioprocesses timely monitoring of the impact of process parameters on the cultivated organism is crucial-a task that cannot be fulfilled by traditional plating assays. As alternative, flow cytometry (FCM) promises a fast and reliable method for viability assessment via the use of fluorescent dyes. In this study, commercially available fluorescent dyes applicable in S. acidocaldarius were identified. The dyes, fluorescein diacetate and concanavalin A conjugated with rhodamine, were discovered to be suitable for viability determination via FCM. For showing the applicability of the developed at-line tool for bioprocess monitoring, a chemostat cultivation on a defined growth medium at 75 °C, pH 3.0 was conducted. Over the timeframe of 800 h, this developed FCM method was compared to the plating assay by monitoring the change in viability upon controlled pH shifts. Both methods detected an impact on the viability at pH values of 2.0 and 1.5 when compared to pH 3.0. A logarithmic relationship between the viability observed via plating assay and via FCM was observed.

3.
Front Bioeng Biotechnol ; 8: 573607, 2020.
Article in English | MEDLINE | ID: mdl-33240864

ABSTRACT

Recombinant protein production with Escherichia coli is usually carried out in fed-batch mode in industry. As set-up and cleaning of equipment are time- and cost-intensive, it would be economically and environmentally favorable to reduce the number of these procedures. Switching from fed-batch to continuous biomanufacturing with microbials is not yet applied as these cultivations still suffer from time-dependent variations in productivity. Repetitive fed-batch process technology facilitates critical equipment usage, reduces the environmental fingerprint and potentially increases the overall space-time yield. Surprisingly, studies on repetitive fed-batch processes for recombinant protein production can be found for yeasts only. Knowledge on repetitive fed-batch cultivation technology for recombinant protein production in E. coli is not available until now. In this study, a mixed feed approach, enabling repetitive fed-batch technology for recombinant protein production in E. coli, was developed. Effects of the cultivation mode on the space-time yield for a single-cycle fed-batch, a two-cycle repetitive fed-batch, a three-cycle repetitive fed batch and a chemostat cultivation were investigated. For that purpose, we used two different E. coli strains, expressing a model protein in the cytoplasm or in the periplasm, respectively. Our results demonstrate that a repetitive fed-batch for E. coli leads to a higher space-time yield compared to a single-cycle fed-batch and can potentially outperform continuous biomanufacturing. For the first time, we were able to show that repetitive fed-batch technology is highly suitable for recombinant protein production in E. coli using our mixed feeding approach, as it potentially (i) improves product throughput by using critical equipment to its full capacity and (ii) allows implementation of a more economic process by reducing cleaning and set-up times.

4.
Int J Mol Sci ; 21(11)2020 May 30.
Article in English | MEDLINE | ID: mdl-32486295

ABSTRACT

The microbial cell membrane is affected by physicochemical parameters, such as temperature and pH, but also by the specific growth rate of the host organism. Homeoviscous adaption describes the process of maintaining membrane fluidity and permeability throughout these environmental changes. Archaea, and thereby, Sulfolobus spp. exhibit a unique lipid composition of ether lipids, which are altered in regard to the ratio of diether to tetraether lipids, number of cyclopentane rings and type of head groups, as a coping mechanism against environmental changes. The main biotechnological application of the membrane lipids of Sulfolobus spp. are so called archaeosomes. Archaeosomes are liposomes which are fully or partly generated from archaeal lipids and harbor the potential to be used as drug delivery systems for vaccines, proteins, peptides and nucleic acids. This review summarizes the influence of environmental parameters on the cell membrane of Sulfolobus spp. and the biotechnological applications of their membrane lipids.


Subject(s)
Biotechnology/methods , Cell Membrane/chemistry , Sulfolobus/chemistry , Biotechnology/trends , Cyclopentanes/chemistry , Drug Delivery Systems , Hydrogen-Ion Concentration , Liposomes/chemistry , Membrane Lipids/chemistry , Membranes, Artificial , Methanobacterium/chemistry , Natronococcus/chemistry , Peptides/chemistry , Temperature , Viscosity
5.
Front Bioeng Biotechnol ; 8: 586833, 2020.
Article in English | MEDLINE | ID: mdl-33634078

ABSTRACT

To date, high-pressure homogenization is the standard method for cell disintegration before the extraction of cytosolic and periplasmic protein from E. coli. Its main drawback, however, is low selectivity and a resulting high load of host cell impurities. Pulsed electric field (PEF) treatment may be used for selective permeabilization of the outer membrane. PEF is a process which is able to generate pores within cell membranes, the so-called electroporation. It can be readily applied to the culture broth in continuous mode, no additional chemicals are needed, heat generation is relatively low, and it is already implemented at industrial scale in the food sector. Yet, studies about PEF-assisted extraction of recombinant protein from bacteria are scarce. In the present study, continuous electroporation was employed to selectively extract recombinant Protein A from the periplasm of E. coli. For this purpose, a specifically designed flow-through PEF treatment chamber was deployed, operated at 1.5 kg/h, using rectangular pulses of 3 µs at specific energy input levels between 10.3 and 241.9 kJ/kg. Energy input was controlled by variation of the electric field strength (28.4-44.8 kV/cm) and pulse repetition frequency (50-1,000 Hz). The effects of the process parameters on cell viability, product release, and host cell protein (HCP), DNA, as well as endotoxin (ET) loads were investigated. It was found that a maximum product release of 89% was achieved with increasing energy input levels. Cell death also gradually increased, with a maximum inactivation of -0.9 log at 241.9 kJ/kg. The conditions resulting in high release efficiencies while keeping impurities low were electric field strengths ≤ 30 kV/cm and frequencies ≥ 825 Hz. In comparison with high-pressure homogenization, PEF treatment resulted in 40% less HCP load, 96% less DNA load, and 43% less ET load. Therefore, PEF treatment can be an efficient alternative to the cell disintegration processes commonly used in downstream processing.

6.
Prep Biochem Biotechnol ; 49(1): 74-81, 2019.
Article in English | MEDLINE | ID: mdl-30664394

ABSTRACT

Escherichia coli is one of the most commonly used host organisms for the production of recombinant biopharmaceuticals. E. coli is usually characterized by fast growth on cheap media and high productivity, but one drawback is its intracellular product formation. Product recovery from E. coli bioprocesses requires tedious downstream processing (DSP). A typical E. coli DSP for an intracellular product starts with a cell disruption step to access the product. Different methods exist, but a scalable process is usually achieved by high pressure homogenization (HPH). The protocols for HPH are often applied universally without adapting them to the recombinant product, even though HPH can affect product quantity and quality. Based on our previous study on cell disruption efficiency, we aimed at screening operational conditions to maximize not only product quantity, but also product quality of a soluble therapeutic protein expressed in E. coli. We screened for critical process parameters (CPPs) using a multivariate approach (design of experiments; DoE) during HPH to maximize product titer and achieve sufficient product quality, based on predefined critical quality attributes (CQAs). In this case study, we were able to gain valuable knowledge on the efficiency of HPH on E. coli cell disruption, product release and its impact on CQAs. Our results show that HPH is a key unit operation that has to be optimized for each product.


Subject(s)
Escherichia coli/genetics , Multivariate Analysis , Pressure , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/therapeutic use
7.
Appl Microbiol Biotechnol ; 102(2): 667-676, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29159587

ABSTRACT

Against the outdated belief that inclusion bodies (IBs) in Escherichia coli are only inactive aggregates of misfolded protein, and thus should be avoided during recombinant protein production, numerous biopharmaceutically important proteins are currently produced as IBs. To obtain correctly folded, soluble product, IBs have to be processed, namely, harvested, solubilized, and refolded. Several years ago, it was discovered that, depending on cultivation conditions and protein properties, IBs contain partially correctly folded protein structures, which makes IB processing more efficient. Here, we present a method of tailored induction of recombinant protein production in E. coli by a mixed feed system using glucose and lactose and its impact on IB formation. Our method allows tuning of IB amount, IB size, size distribution, and purity, which does not only facilitate IB processing, but is also crucial for potential direct applications of IBs as nanomaterials and biomaterials in regenerative medicine.


Subject(s)
Escherichia coli/metabolism , Inclusion Bodies/metabolism , Recombinant Proteins/biosynthesis , Culture Media , Escherichia coli/genetics , Escherichia coli Proteins/metabolism , Glucose/metabolism , Inclusion Bodies/genetics , Lactose/metabolism , Protein Folding , Recombinant Proteins/genetics , Solubility
8.
Methods Mol Biol ; 1586: 397-408, 2017.
Article in English | MEDLINE | ID: mdl-28470620

ABSTRACT

Induction by lactose is known to have a beneficial effect on the expression of soluble recombinant proteins in E. coli harboring the T7 expression system (e.g., E. coli BL21(DE3)). As lactose is a metabolizable inducer, it needs to be supplied continuously to prevent depletion and thus only partial induction. Overfeeding and accumulation of lactose or glucose on the other hand can lead to osmotic stress. Thus, it is of utmost importance to know the possible feeding ranges. Here, we show a fast method using a simple mechanistic model to characterize E. coli strains harboring the T7 expression system regarding their ability to take up lactose and glucose. This approach reduces experimental work and the gained data allows running a stable and robust bioprocess without accumulation of lactose or glucose.


Subject(s)
Escherichia coli/metabolism , Glucose/metabolism , Lactose/metabolism , Batch Cell Culture Techniques/methods , Biological Transport , Bioreactors , Escherichia coli/genetics , Escherichia coli/growth & development , Gene Expression , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
9.
Sci Rep ; 7: 45072, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28332595

ABSTRACT

When producing recombinant proteins, the use of Escherichia coli strain BL21(DE3) in combination with the T7-based pET-expression system is often the method of choice. In a recent study we introduced a mechanistic model describing the correlation of the specific glucose uptake rate (qs,glu) and the corresponding maximum specific lactose uptake rate (qs,lac,max) for a pET-based E. coli BL21(DE3) strain producing a single chain variable fragment (scFv). We showed the effect of qs,lac,max on productivity and product location underlining its importance for recombinant protein production. In the present study we investigated the mechanistic qs,glu/qs,lac,max correlation for four pET-based E. coli BL21(DE3) strains producing different recombinant products and thereby proved the mechanistic model to be platform knowledge for E. coli BL21(DE3). However, we found that the model parameters strongly depended on the recombinant product. Driven by this observation we tested different dynamic bioprocess strategies to allow a faster investigation of this mechanistic correlation. In fact, we succeeded and propose an experimental strategy comprising only one batch cultivation, one fed-batch cultivation as well as one dynamic experiment, to reliably determine the mechanistic model for qs,glu/qs,lac,max and get trustworthy model parameters for pET-based E. coli BL21(DE3) strains which are the basis for bioprocess development.


Subject(s)
Escherichia coli/physiology , Mechanical Phenomena , Models, Biological , Sugars/metabolism , Algorithms
10.
Eng Life Sci ; 17(2): 215-222, 2017 Feb.
Article in English | MEDLINE | ID: mdl-32624769

ABSTRACT

Recombinant protein production in Escherichia coli usually leads to accumulation of the product inside the cells. To capture the product, cells are harvested, resuspended, and lysed. However, in cases where the product is transported to the periplasm, selective disruption of the outer membrane leads to much purer crude extracts compared to complete cell lysis, as only 4-8% of the native E. coli host cell proteins are located in the periplasmic space. A variety of different strategies to enable selective release of the product from the periplasm is available. However, in most of these studies cells are harvested before they are resuspended in permeabilization agent and no differentiation between leakiness and lysis is made. Here, we tested and compared different strategies to trigger leakiness. In contrast to other studies, we performed these experiments during cultivation and quantified both leakiness and lysis. In summary, we recommend incubation with 350 mM TRIS at constant pH for several hours followed by a mild heat treatment up to 38°C to trigger leakiness with only minimal lysis. This study represents a comparative summary of different strategies to trigger E. coli leakiness and describes a solid basis for further experiments in this field.

11.
Eng Life Sci ; 17(6): 598-604, 2017 Jun.
Article in English | MEDLINE | ID: mdl-32624805

ABSTRACT

In a recently published study, we developed a simple methodology to monitor Escherichia coli cell integrity and lysis during bioreactor cultivations, where we intentionally triggered leakiness. In this follow-up study, we used this methodology, comprising the measurement of extracellular alkaline phosphatase to monitor leakiness and flow cytometry to follow viability, to investigate the effect of process parameters on a recombinant E. coli strain producing the highly valuable vascular endothelial growth factor A165 (VEGF-A165) in the periplasm. Since the amount of soluble product was very little (<500 µg/g dry cell weight), we directly linked the effect of the three process parameters temperature, specific uptake rate of the inducer arabinose and specific growth rate (µ) to cell integrity and viability. We found that a low temperature and a high µ were beneficial for cell integrity and that an elevated temperature resulted in reduced viability. We concluded that the recombinant E. coli cells producing VEGF-A165 in the periplasm should be cultivated at low temperature and high µ to reduce leakiness and guarantee high viability. Summarizing, in this follow-up study we demonstrate the usefulness of our simple methodology to monitor leakiness and viability of recombinant E. coli cells during bioreactor cultivations.

12.
Sensors (Basel) ; 16(11)2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27845720

ABSTRACT

New approaches in process monitoring during industrial fermentations are not only limited to classical pH, dO2 and offgas analysis, but use different in situ and online sensors based on different physical principles to determine biomass, product quality, lysis and far more. One of the very important approaches is the in situ accessibility of viable cell concentration (VCC). This knowledge provides increased efficiency in monitoring and controlling strategies during cultivations. Electrochemical impedance spectroscopy-EIS-is used to monitor biomass in a fermentation of E. coli BL21(DE3), producing a recombinant protein using a fed batch-based approach. Increases in the double layer capacitance (Cdl), determined at frequencies below 1 kHz, are proportional to the increase of biomass in the batch and fed batch phase, monitored in offline and online modes for different cultivations. A good correlation of Cdl with cell density is found and in order to get an appropriate verification of this method, different state-of-the-art biomass measurements are performed and compared. Since measurements in this frequency range are largely determined by the double layer region between the electrode and media, rather minor interferences with process parameters (aeration, stirring) are to be expected. It is shown that impedance spectroscopy at low frequencies is a powerful tool for cultivation monitoring.


Subject(s)
Dielectric Spectroscopy/methods , Biomass , Bioreactors/microbiology , Escherichia coli/metabolism , Fermentation/genetics , Fermentation/physiology , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...