Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ChemMedChem ; 18(14): e202300145, 2023 07 17.
Article in English | MEDLINE | ID: mdl-37170841

ABSTRACT

Flupirtine and retigabine were essential drugs to combat pain and epilepsy. However, the Kv 7 potassium channel openers are fraught with hepatotoxicity and tissue discoloration, respectively, limiting their therapeutic value. Both adverse events are likely due to reactive metabolites arising from oxidative metabolism. Designing safer analogues lacking the structural elements leading to described side effects is an active area of current research. One of the main metabolites of flupirtine is the biologically inactive 4-fluorohippuric acid. Hitherto unexplained, the proposed metabolic pathway leading to the formation of 4-fluorohippuric acid from flupirtine is verified here. Through the use of eighteen flupirtine analogues, mechanistic details of this pathway could be elucidated. A possible connection with the in vitro hepatotoxicity of the flupirtine analogues and the levels of 4-fluorobenzoic acid formed in enzyme incubations was examined by correlation analysis. These findings provide important information for the design of new flupirtine analogues as potential drug candidates.


Subject(s)
Chemical and Drug Induced Liver Injury , Esterases , Humans , Analgesics/pharmacology , Aminopyridines/toxicity , Aminopyridines/chemistry , Structure-Activity Relationship
2.
Arch Pharm (Weinheim) ; 356(2): e2200473, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36395379

ABSTRACT

KV 7 channel openers have proven their therapeutic value in the treatment of pain as well as epilepsy and, moreover, they hold the potential to expand into additional indications with unmet medical needs. However, the clinically validated but meanwhile discontinued KV 7 channel openers flupirtine and retigabine bear an oxidation-sensitive triaminoraryl scaffold, which is suspected of causing adverse drug reactions via the formation of quinoid oxidation products. Here, we report the design and synthesis of nicotinamide analogs and related compounds that remediate the liability in the chemical structure of flupirtine and retigabine. Optimization of a nicotinamide lead structure yielded analogs with excellent KV 7.2/3 opening activity, as evidenced by EC50 values approaching the single-digit nanomolar range. On the other hand, weighted KV 7.2/3 opening activity data including inactive compounds allowed for the establishment of structure-activity relationships and a plausible binding mode hypothesis verified by docking and molecular dynamics simulations.


Subject(s)
Aminopyridines , KCNQ Potassium Channels , KCNQ Potassium Channels/metabolism , Structure-Activity Relationship , Aminopyridines/chemistry
3.
ChemMedChem ; 17(16): e202200262, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35687532

ABSTRACT

The KV 7 potassium channel openers flupirtine and retigabine have been valuable options in the therapy of pain and epilepsy. However, as a result of adverse reactions, both drugs are currently no longer in therapeutic use. The flupirtine-induced liver injury and the retigabine linked tissue discolouration do not appear related at first glance; nevertheless, both events can be attributed to the triaminoaryl scaffold, which is affected by oxidation leading to elusive reactive quinone diimine or azaquinone diimine metabolites. Since the mechanism of action, i. e. KV 7 channel opening, seems not to be involved in toxicity, this study aimed to further develop safer replacements for flupirtine and retigabine. In a ligand-based design strategy, replacing amino substituents of the triaminoaryl core with alkyl substituents led to carba analogues with improved oxidation resistance and negligible risk of quinoid metabolite formation. In addition to these improved safety features, some of the novel analogues exhibited significantly improved KV 7.2/3 channel opening activity, indicated by an up to 13-fold increase in potency and an efficacy of up to 176 % compared to flupirtine, thus being attractive candidates for further development.


Subject(s)
Carbamates , Phenylenediamines , Aminopyridines/pharmacology , Aminopyridines/therapeutic use , Carbamates/pharmacology , KCNQ Potassium Channels/metabolism , Phenylenediamines/pharmacology
4.
ACS Omega ; 7(9): 7989-8012, 2022 Mar 08.
Article in English | MEDLINE | ID: mdl-35284765

ABSTRACT

The potassium channel opening drugs flupirtine and retigabine have been withdrawn from the market due to occasional drug-induced liver injury (DILI) and tissue discoloration, respectively. While the mechanism underlying DILI after prolonged flupirtine use is not entirely understood, evidence indicates that both drugs are metabolized in an initial step to reactive ortho- and/or para-azaquinone diimines or ortho- and/or para-quinone diimines, respectively. Aiming to develop safer alternatives for the treatment of pain and epilepsy, we have attempted to separate activity from toxicity by employing a drug design strategy of avoiding the detrimental oxidation of the central aromatic ring by shifting oxidation toward the formation of benign metabolites. In the present investigation, an alternative retrometabolic design strategy was followed. The nitrogen atom, which could be involved in the formation of both ortho- or para-quinone diimines of the lead structures, was shifted away from the central ring, yielding a substitution pattern with nitrogen substituents in the meta position only. Evaluation of KV7.2/3 opening activity of the 11 new specially designed derivatives revealed surprisingly steep structure-activity relationship data with inactive compounds and an activity cliff that led to the identification of an apparent "magic methyl" effect in the case of N-(4-fluorobenzyl)-6-[(4-fluorobenzyl)amino]-2-methoxy-4-methylnicotinamide. This flupirtine analogue showed potent KV7.2/3 opening activity, being six times as active as flupirtine itself, and by design is devoid of the potential for azaquinone diimine formation.

SELECTION OF CITATIONS
SEARCH DETAIL
...