Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Biomater ; 166: 447-453, 2023 08.
Article in English | MEDLINE | ID: mdl-37121368

ABSTRACT

The limpet tooth is widely recognized as nature's strongest material, with reported strength values up to 6.5 GPa. Recently, microscale auxeticity has been discovered in the leading part of the tooth, providing a possible explanation for this extreme strength. Utilizing micromechanical experiments, we find hardness values in nanoindentation that are lower than the respective strength observed in micropillar compression tests. Using micromechanical modeling, we show that this unique behavior is a result of local tensile strains during indentation, originating from the microscale auxeticity. As the limpet tooth lacks ductility, these tensile strains lead to microdamage in the auxetic regions of the microstructure. Consequently, indentation with a sharp indenter always probes a damaged version of the material, explaining the lower hardness and modulus values gained from nanoindentation. Micropillar tests were found to be mostly insensitive to such microdamage due to the lower applied strain and are therefore the suggested method for characterizing auxetic nanocomposites. STATEMENT OF SIGNIFICANCE: This work explores the micromechanical properties of limpet teeth, nature's strongest biomaterial, using micropillar compression testing and nanoindentation. The limpet tooth microstructure consists of ceramic nanorods embedded in a matrix of amorphous SiO2 and arranged in a pattern that leads to local auxetic behavior. We report lower values for nanoindentation hardness than for compressive strength, a unique behavior usually not achievable in conventional materials. Utilizing micromechanical finite element simulations, we identify the reason for this behavior to be microdamage formation resultant of the auxetic behavior, sharp indenter tip and lack of ductility of the limpet tooth microstructure. This formation of microdamage is not expected in micropillar compression tests due to lower locally imposed strain.


Subject(s)
Silicon Dioxide , Tooth , Hardness , Biocompatible Materials , Compressive Strength
2.
Sci Adv ; 8(48): eadd4644, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36459556

ABSTRACT

Materials displaying negative Poisson's ratio, referred to as auxeticity, have been found in nature and created in engineering through various structural mechanisms. However, uniting auxeticity with high strength and high stiffness has been challenging. Here, combining in situ nanomechanical testing with microstructure-based modeling, we show that the leading part of limpet teeth successfully achieves this combination of properties through a unique microstructure consisting of an amorphous hydrated silica matrix embedded with bundles of single-crystal iron oxide hydroxide nanorods arranged in a pseudo-cholesteric pattern. During deformation, this microstructure allows local coordinated displacement and rotation of the nanorods, enabling auxetic behavior while maintaining one of the highest strengths among natural materials. These findings lay a foundation for designing biomimetic auxetic materials with extreme strength and high stiffness.

3.
Nanomaterials (Basel) ; 11(11)2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34835714

ABSTRACT

The applicability of nano-crystalline W/Cu composites is governed by their mechanical properties and microstructural stability at high temperatures. Therefore, mechanical and structural investigations of a high-pressure torsion deformed W/Cu nanocomposite were performed up to a temperature of 600 °C. Furthermore, the material was annealed at several temperatures for 1 h within a high-vacuum furnace to determine microstructural changes and surface effects. No significant increase of grain size, but distinct evaporation of the Cu phase accompanied by Cu pool and faceted Cu particle formation could be identified on the specimen's surface. Additionally, high-temperature nanoindentation and strain rate jump tests were performed to investigate the materials mechanical response at elevated temperatures. Hardness and Young's modulus decrease were noteworthy due to temperature-induced effects and slight grain growth. The strain rate sensitivity in dependent of the temperature remained constant for the investigated W/Cu composite material. Also, the activation volume of the nano-crystalline composite increased with temperature and behaved similar to coarse-grained W. The current study extends the understanding of the high-temperature behavior of nano-crystalline W/Cu composites within vacuum environments such as future fusion reactors.

SELECTION OF CITATIONS
SEARCH DETAIL
...