Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Front Neurol ; 15: 1372674, 2024.
Article in English | MEDLINE | ID: mdl-38633535

ABSTRACT

Background/objective: Insufficiency of respiratory muscles is the most important reason for mortality in the natural history of SMA. Thus, improvement or stabilization of respiratory function by disease-modifying therapies (DMT) is a very important issue. Methods: We examined respiratory function using forced vital capacity (FVC) in 42 adult SMA patients (2 SMA type 1, 15 SMA type 2, 24 SMA type 3, 1 SMA type 4, median age 37 years, range 17-61 years) treated with nusinersen for a median of 22.1 months (range 2.1 to 46.7 months). Change in FVC was assessed using mixed effects linear regression models. Results: Baseline FVC differed significantly between SMA type 1 (4.0, 8.0%), 2 (median 22.0%, IQR 18.0-44.0), 3 (median 81.0%, IQR 67.0-90.8) and, respectively, type 4 (84.0%) patients reflecting the heterogeneity of respiratory impairment based on the SMA type in adulthood (p < 0.0001). FVC remained stable during follow-up (mean -0.047, 95% CI -0.115 to 0.020, p = 0.17); however, subgroup analysis showed an increase in FVC of type 2 patients (mean 0.144, 95% CI 0.086 to 0.202, p < 0.0001) and a decrease in FVC of type 3/4 patients (-0.142, 95% CI -0.239 to -0.044, p = 0.005). Conclusion: The observed improvement in FVC in patients with SMA type 2 can be seen as a therapeutic response differing from the progressive decline typically seen in the spontaneous course. For SMA type 3/4 patients approaching normal spirometry at baseline, FVC may only be of limited use as an outcome parameter due to ceiling effects.

2.
Lancet Reg Health Eur ; 39: 100862, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38361750

ABSTRACT

Background: Evidence for the efficacy of nusinersen in adults with 5q-associated spinal muscular atrophy (SMA) has been demonstrated up to a period of 16 months in relatively large cohorts but whereas patients reach a plateau over time is still to be demonstrated. We investigated the efficacy and safety of nusinersen in adults with SMA over 38 months, the longest time period to date in a large cohort of patients from multiple clinical sites. Methods: Our prospective, observational study included adult patients with SMA from Germany, Switzerland, and Austria (July 2017 to May 2022). All participants had genetically-confirmed, 5q-associated SMA and were treated with nusinersen according to the label. The total Hammersmith Functional Motor Scale Expanded (HFMSE) and Revised Upper Limb Module (RULM) scores, and 6-min walk test (6 MWT; metres), were recorded at baseline and 14, 26, and 38 months after treatment initiation, and pre and post values were compared. Adverse events were also recorded. Findings: Overall, 389 patients were screened for eligibility and 237 were included. There were significant increases in all outcome measures compared with baseline, including mean HFMSE scores at 14 months (mean difference 1.72 [95% CI 1.19-2.25]), 26 months (1.20 [95% CI 0.48-1.91]), and 38 months (1.52 [95% CI 0.74-2.30]); mean RULM scores at 14 months (mean difference 0.75 [95% CI 0.43-1.07]), 26 months (mean difference 0.65 [95% CI 0.27-1.03]), and 38 months (mean difference 0.72 [95% CI 0.25-1.18]), and 6 MWT at 14 months (mean difference 30.86 m [95% CI 18.34-43.38]), 26 months (mean difference 29.26 m [95% CI 14.87-43.65]), and 38 months (mean difference 32.20 m [95% CI 10.32-54.09]). No new safety signals were identified. Interpretation: Our prospective, observational, long-term (38 months) data provides further real-world evidence for the continuous efficacy and safety of nusinersen in a large proportion of adult patients with SMA. Funding: Financial support for the registry from Biogen, Novartis and Roche.

3.
Hum Gene Ther ; 33(17-18): 968-976, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35943879

ABSTRACT

5q-associated spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder that leads to progressive muscle atrophy and weakness. The disease is caused by a homozygous deletion or mutation in the survival of motor neuron 1 (SMN1) gene, resulting in insufficient levels of SMN protein. Onasemnogene abeparvovec-xioi (OA) is a nonreplicating vector based on adeno-associated virus serotype 9 (AAV9) that contains the full-length human SMN1 gene. Recently, OA was approved for the treatment of SMA by the U.S. Food and Drug Administration and the European Medicines Agency. Because the presence of neutralizing antibodies caused by previous natural exposure to wild-type adeno-associated viruses (AAVs) may impair the efficiency of AAV-mediated gene transfer and thus reduce the therapeutic benefit of the gene therapy, an AAV9-binding antibody titer of >1:50 was defined as a surrogate exclusion criterion in pivotal OA clinical trials. However, these studies were exclusively conducted in infants and children. Because data on anti-AAV9 antibody titers in adults are generally sparse and not available for adult patients with SMA, we determined the prevalence of anti-AAV9 antibodies in sera of adult individuals with SMA to evaluate the feasibility of AAV9-mediated gene therapy in this cohort. In our study population of 69 adult patients with SMA type 2 and type 3 from four German academic sites, only 3 patients (4.3%) had an elevated anti-AAV9 antibody titer of >1:50. The prevalence of anti-AAV9 antibodies did not increase with age. The low and age-independent prevalence of anti-AAV9 antibodies in our cohort provides evidence that gene therapy with intravenous administered recombinant AAV9 vectors (rAAV9) might be feasible in adult patients with SMA, regardless of the patients' sex, SMA type, walking ability, or ventilatory status. This could also apply to the treatment of other inherited neurological diseases with rAAV9.


Subject(s)
Dependovirus , Muscular Atrophy, Spinal , Antibodies, Neutralizing/genetics , Antibodies, Neutralizing/therapeutic use , Child , Dependovirus/genetics , Homozygote , Humans , Infant , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/therapy , Prevalence , Sequence Deletion , Serogroup
4.
Orphanet J Rare Dis ; 16(1): 330, 2021 07 28.
Article in English | MEDLINE | ID: mdl-34321067

ABSTRACT

BACKGROUND: Studies regarding the impact of (neuro)inflammation and inflammatory response following repetitive, intrathecally administered antisense oligonucleotides (ASO) in 5q-associated spinal muscular atrophy (SMA) are sparse. Increased risk of hydrocephalus in untreated SMA patients and a marginal but significant increase of the serum/CSF albumin ratio (Qalb) with rare cases of communicating hydrocephalus during nusinersen treatment were reported, which confirms the unmet need of an inflammatory biomarker in SMA. The aim of this study was to investigate the (neuro)inflammatory marker chitotriosidase 1 (CHIT1) in SMA patients before and following the treatment with the ASO nusinersen. METHODS: In this prospective, multicenter observational study, we studied CSF CHIT1 concentrations in 58 adult and 21 pediatric patients with SMA type 1, 2 or 3 before treatment initiation in comparison to age- and sex-matched controls and investigated its dynamics during nusinersen treatment. Concurrently, motor performance and disease severity were assessed. RESULTS: CHIT1 concentrations were elevated in treatment-naïve SMA patients as compared to controls, but less pronounced than described for other neurodegenerative diseases such as amyotrophic lateral sclerosis. CHIT1 concentration did not correlate with disease severity and did not distinguish between clinical subtypes. CHIT1 concentration did show a significant increase during nusinersen treatment that was unrelated to the clinical response to nusinersen therapy. CONCLUSIONS: CHIT1 elevation in treatment-naïve SMA patients indicates the involvement of (neuro)inflammation in SMA. The lacking correlation of CHIT1 concentration with disease severity argues against its use as a marker of disease progression. The observed CHIT1 increase during nusinersen treatment may indicate an immune response-like, off-target reaction. Since antisense oligonucleotides are an establishing approach in the treatment of neurodegenerative diseases, this observation needs to be further evaluated.


Subject(s)
Muscular Atrophy, Spinal , Oligonucleotides , Adult , Child , Hexosaminidases , Humans , Muscular Atrophy, Spinal/drug therapy , Prospective Studies
5.
Front Neurol ; 10: 1098, 2019.
Article in English | MEDLINE | ID: mdl-31736847

ABSTRACT

Background: 5q spinal muscular atrophy (SMA) is an autosomal recessive lower motoneuron disease caused by deletion or mutations in the survival motor neuron 1 gene (SMN1) which results in reduced expression of full-length SMN protein. The main symptoms are caused by spinal motor neuron demise leading to muscle atrophy, and medical care mostly refers to motor symptoms. However, new insights of recent studies in severe SMA type I revealed disease involvement of several non-motor regions, for example cardiac, vascular, sensory nerve involvement, and thalamic lesions. Non-motor symptoms (NMS) were previously described in many neurodegenerative diseases i.e., Parkinson's disease and, importantly, also amyotrophic lateral sclerosis. Methods: We screened for NMS in 70 adult patients with SMA type II (SMAII) and type III (SMAIII) and 59 age/sex-matched healthy controls (controls) in a multicenter cross-sectional study including 5 different centers with specialized expertise in medical health care of motoneuron diseases. We used a self-rating questionnaire including 30 different items of gastrointestinal, autonomic, neuropsychiatric, and sleep complaints [NMS questionnaire (NMSQuest)], which is a validated tool in Parkinson's disease. Results: Total NMS burden was low in adult SMA (median: 3 items) and not significantly different compared to controls (median: 2 items). Total NMS of SMA patients did not correlate with disease severity scores. However, the items "swallowing difficulties," "falling," and particularly "swelling legs" were significantly more frequently reported in SMA. Neuropsychiatric symptoms were reported in a frequency comparable to controls and were not significantly increased in SMA. Conclusion: Patient-reported prevalence of NMS in adult SMA was low, which does not argue for a clinically relevant multisystemic disorder in SMAII/III. Importantly, adult SMA patients do not seem to suffer more frequently from symptoms of depression or adaptive disorders compared to controls. Our results yield novel information on previously underreported symptoms and will help to improve the medical guidance of these patients.

8.
Brain Struct Funct ; 220(3): 1637-48, 2015.
Article in English | MEDLINE | ID: mdl-24647755

ABSTRACT

Functional imaging demonstrated hemodynamic activation within specific brain areas that contribute to frequency-dependent movement control. Previous investigations demonstrated a linear relationship between movement and hemodynamic response rates within cortical regions, whereas the basal ganglia displayed an inverse neural activation pattern. We now investigated neural correlates of frequency-related finger movements in patients with Parkinson's disease (PD) to further elucidate the neurofunctional alterations in cortico-subcortical networks in that disorder. We studied ten PD patients (under dopaminergic medication) and ten healthy subjects using a finger-tapping task at three different frequencies (1-4 Hz), implemented in an event-related, sparse sampling fMRI design. FMRI data were analyzed by means of a parametric approach to relate movement rates and regional BOLD signal alteration. Compared to healthy controls, PD patients showed higher tapping response rates only during the lower 1 Hz condition. FMRI analysis revealed a rate-dependent neural activity within the supplemental motor area, primary sensorimotor cortex, thalamus and the cerebellum with higher neural activity at higher frequency conditions in both groups. Within the putamen/pallidum, an inverse neural activity and frequency response correlation could be observed in healthy subjects with higher BOLD signal responses in slow frequencies, whereas this relationship was not evident in PD patients. We could demonstrate similar behavioral responses and neural activation patterns at the level both of frontal and cerebellar areas in PD compared to healthy controls, whereas regions like the putamen/pallidum appear to be still dysfunctional under medication regarding frequency-related neural activation. These findings may, potentially, serve as a neural signature of basal ganglia dysfunctions in frequency-related task requirements.


Subject(s)
Brain/physiopathology , Motor Activity/physiology , Parkinson Disease/physiopathology , Aged , Basal Ganglia/physiopathology , Brain Mapping , Female , Fingers , Humans , Levodopa/therapeutic use , Magnetic Resonance Imaging , Male , Middle Aged , Parkinson Disease/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...