Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
Add more filters










Publication year range
1.
Vision Res ; 41(25-26): 3399-412, 2001.
Article in English | MEDLINE | ID: mdl-11718782

ABSTRACT

The ability of primates to make rapid and accurate saccadic eye movements for exploring the natural world is based on a neuronal system in the brain that has been studied extensively and is known to include multiple brain regions extending throughout the neuraxis. We examined the characteristics of signal flow in this system by recording from identified output neurons of two cortical regions, the lateral intraparietal area (LIP) and the frontal eye field (FEF), and from neurons in a brainstem structure targeted by these output neurons, the superior colliculus (SC). We compared the activity of neurons in these three populations while monkeys performed a delayed saccade task that allowed us to quantify visual responses, motor activity, and intervening delay activity. We examined whether delay activity was related to visual stimulation by comparing the activity during interleaved trials when a target was either present or absent during the delay period. We examined whether delay activity was related to movement by using a Go/Nogo task and comparing the activity during interleaved trials in which a saccade was either made (Go) or not (Nogo). We found that LIP output neurons, FEF output neurons, and SC neurons can all have visual responses, delay activity, and presaccadic bursts; hence in this way they are all quite similar. However, the delay activity tended to be more related to visual stimulation in the cortical output neurons than in the SC neurons. Complementing this, the delay activity tended to be more related to movement in the SC neurons than in the cortical output neurons. We conclude, first, that the signal flow leaving the cortex represents activity at nearly every stage of visuomotor transformation, and second, that there is a gradual evolution of signal processing as one proceeds from cortex to colliculus.


Subject(s)
Cerebral Cortex/physiology , Saccades/physiology , Signal Transduction/physiology , Superior Colliculi/physiology , Analysis of Variance , Animals , Macaca mulatta , Memory/physiology , Reaction Time , Statistics, Nonparametric
2.
J Neurophysiol ; 85(6): 2545-62, 2001 Jun.
Article in English | MEDLINE | ID: mdl-11387400

ABSTRACT

Neurons in both the lateral intraparietal area (LIP) of the monkey parietal cortex and the intermediate layers of the superior colliculus (SC) are activated well in advance of the initiation of saccadic eye movements. To determine whether there is a progression in the covert processing for saccades from area LIP to SC, we systematically compared the discharge properties of LIP output neurons identified by antidromic activation with those of SC neurons collected from the same monkeys. First, we compared activity patterns during a delayed saccade task and found that LIP and SC neurons showed an extensive overlap in their responses to visual stimuli and in their sustained activity during the delay period. The saccade activity of LIP neurons was, however, remarkably weaker than that of SC neurons and never occurred without any preceding delay activity. Second, we assessed the dependence of LIP and SC activity on the presence of a visual stimulus by contrasting their activity in delayed saccade trials in which the presentation of the visual stimulus was either sustained (visual trials) or brief (memory trials). Both the delay and the presaccadic activity levels of the LIP neuronal sample significantly depended on the sustained presence of the visual stimulus, whereas those of the SC neuronal sample did not. Third, we examined how the LIP and SC delay activity relates to the future production of a saccade using a delayed GO/NOGO saccade task, in which a change in color of the fixation stimulus instructed the monkey either to make a saccade to a peripheral visual stimulus or to withhold its response and maintain fixation. The average delay activity of both LIP and SC neuronal samples significantly increased by the advance instruction to make a saccade, but LIP neurons were significantly less dependent on the response instruction than SC neurons, and only a minority of LIP neurons was significantly modulated. Thus despite some overlap in their discharge properties, the neurons in the SC intermediate layers showed a greater independence from sustained visual stimulation and a tighter relationship to the production of an impending saccade than the LIP neurons supplying inputs to the SC. Rather than representing the transmission of one processing stage in parietal cortex area LIP to a subsequent processing stage in SC, the differences in neuronal activity that we observed suggest instead a progressive evolution in the neuronal processing for saccades.


Subject(s)
Parietal Lobe/cytology , Parietal Lobe/physiology , Saccades/physiology , Superior Colliculi/cytology , Superior Colliculi/physiology , Animals , Electrophysiology , Macaca mulatta , Male , Neural Pathways , Neurons/physiology , Photic Stimulation , Psychomotor Performance/physiology
3.
J Neurophysiol ; 85(4): 1673-85, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11287490

ABSTRACT

Many neurons within prefrontal cortex exhibit a tonic discharge between visual stimulation and motor response. This delay activity may contribute to movement, memory, and vision. We studied delay activity sent from the frontal eye field (FEF) in prefrontal cortex to the superior colliculus (SC). We evaluated whether this efferent delay activity was related to movement, memory, or vision, to establish its possible functions. Using antidromic stimulation, we identified 66 FEF neurons projecting to the SC and we recorded from them while monkeys performed a Go/Nogo task. Early in every trial, a monkey was instructed as to whether it would have to make a saccade (Go) or not (Nogo) to a target location, which permitted identification of delay activity related to movement. In half of the trials (memory trials), the target disappeared, which permitted identification of delay activity related to memory. In the remaining trials (visual trials), the target remained visible, which permitted identification of delay activity related to vision. We found that 77% (51/66) of the FEF output neurons had delay activity. In 53% (27/51) of these neurons, delay activity was modulated by Go/Nogo instructions. The modulation preceded saccades made into only part of the visual field, indicating that the modulation was movement-related. In some neurons, delay activity was modulated by Go/Nogo instructions in both memory and visual trials and seemed to represent where to move in general. In other neurons, delay activity was modulated by Go/Nogo instructions only in memory trials, which suggested that it was a correlate of working memory, or only in visual trials, which suggested that it was a correlate of visual attention. In 47% (24/51) of FEF output neurons, delay activity was unaffected by Go/Nogo instructions, which indicated that the activity was related to the visual stimulus. In some of these neurons, delay activity occurred in both memory and visual trials and seemed to represent a coordinate in visual space. In others, delay activity occurred only in memory trials and seemed to represent transient visual memory. In the remainder, delay activity occurred only in visual trials and seemed to be a tonic visual response. In conclusion, the FEF sends diverse delay activity signals related to movement, memory, and vision to the SC, where the signals may be used for saccade generation. Downstream transmission of various delay activity signals may be an important, general way in which the prefrontal cortex contributes to the control of movement.


Subject(s)
Memory/physiology , Movement/physiology , Prefrontal Cortex/physiology , Superior Colliculi/physiology , Synaptic Transmission/physiology , Visual Fields/physiology , Visual Perception/physiology , Animals , Macaca mulatta , Neurons, Afferent/physiology , Photic Stimulation , Prefrontal Cortex/cytology , Reaction Time , Saccades/physiology , Time Factors
4.
J Neurophysiol ; 85(2): 804-15, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11160514

ABSTRACT

Both the frontal eye field (FEF) in the prefrontal cortex and the superior colliculus (SC) on the roof of the midbrain participate in the generation of rapid or saccadic eye movements and both have projections to the premotor circuits of the brain stem where saccades are ultimately generated. In the present experiments, we tested the contributions of the pathway from the FEF to the premotor circuitry in the brain stem that bypasses the SC. We assayed the contribution of the FEF to saccade generation by evoking saccades with direct electrical stimulation of the FEF. To test the role of the SC in conveying information to the brain stem, we inactivated the SC, thereby removing the circuit through the SC to the brain stem, and leaving only the direct FEF-brain stem pathway. If the contributions of the direct pathway were substantial, removal of the SC should have minimal effect on the FEF stimulation, whereas if the FEF stimulation were dependent on the SC, removal of the SC should alter the effect of FEF stimulation. By acutely inactivating the SC, instead of ablating it, we were able to test the efficiency of the direct FEF-brain stem pathway before substantial compensatory mechanisms could mask the effect of removing the SC. We found two striking effects of SC inactivation. In the first, we stimulated the FEF at a site that evoked saccades with vectors that were very close to those evoked at the site of the SC inactivation, and with such optimal alignment, we found that SC inactivation eliminated the saccades evoked by FEF stimulation. The second effect was evident when the FEF evoked saccades were disparate from those evoked in the SC, and in this case we observed a shift in the direction of the evoked saccade that was consistent with the SC inactivation removing a component of a vector average. Together these observations lead to the conclusion that in the nonablated monkey the direct FEF-brain stem pathway is not functionally sufficient to generate accurate saccades in the absence of the indirect pathway that courses from the FEF through the SC to the brain stem circuitry. We suggest that the recovery of function following SC ablation that has been seen in previous studies must result not from the use of an already functioning parallel pathway but from neural plasticity within the saccadic system.


Subject(s)
Saccades/physiology , Superior Colliculi/physiology , Visual Fields/physiology , Animals , Brain Mapping , Electric Stimulation , Haplorhini , Injections , Lidocaine/pharmacology , Superior Colliculi/drug effects
5.
J Neurophysiol ; 84(2): 876-91, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10938314

ABSTRACT

The intermediate and deep layers of the monkey superior colliculus (SC) comprise a retinotopically organized map for eye movements. The rostral end of this map, corresponding to the representation of the fovea, contains neurons that have been referred to as "fixation cells" because they discharge tonically during active fixation and pause during the generation of most saccades. These neurons also possess movement fields and are most active for targets close to the fixation point. Because the parafoveal locations encoded by these neurons are also important for guiding pursuit eye movements, we studied these neurons in two monkeys as they generated smooth pursuit. We found that fixation cells exhibit the same directional preferences during pursuit as during small saccades-they increase their discharge during movements toward the contralateral side and decrease their discharge during movements toward the ipsilateral side. This pursuit-related activity could be observed during saccade-free pursuit and was not predictive of small saccades that often accompanied pursuit. When we plotted the discharge rate from individual neurons during pursuit as a function of the position error associated with the moving target, we found tuning curves with peaks within a few degrees contralateral of the fovea. We compared these pursuit-related tuning curves from each neuron to the tuning curves for a saccade task from which we separately measured the visual, delay, and peri-saccadic activity. We found the highest and most consistent correlation with the delay activity recorded while the monkey viewed parafoveal stimuli during fixation. The directional preferences exhibited during pursuit can therefore be attributed to the tuning of these neurons for contralateral locations near the fovea. These results support the idea that fixation cells are the rostral extension of the buildup neurons found in the more caudal colliculus and that their activity conveys information about the size of the mismatch between a parafoveal stimulus and the currently foveated location. Because the generation of pursuit requires a break from fixation, the pursuit-related activity indicates that these neurons are not strictly involved with maintaining fixation. Conversely, because activity during the delay period was found for many neurons even when no eye movement was made, these neurons are also not obligatorily related to the generation of a movement. Thus the tonic activity of these rostral neurons provides a potential position-error signal rather than a motor command-a principle that may be applicable to buildup neurons elsewhere in the SC.


Subject(s)
Neurons/physiology , Pursuit, Smooth/physiology , Superior Colliculi/cytology , Superior Colliculi/physiology , Animals , Electrophysiology , Fixation, Ocular/physiology , Fovea Centralis/cytology , Fovea Centralis/physiology , Macaca mulatta , Photic Stimulation , Reaction Time/physiology , Saccades/physiology , Visual Fields/physiology , Visual Pathways/cytology , Visual Pathways/physiology
6.
J Neurophysiol ; 84(2): 892-908, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10938315

ABSTRACT

Neurons in the intermediate and deep layers of the rostral superior colliculus (SC) of monkeys are active during attentive fixation, small saccades, and smooth-pursuit eye movements. Alterations of SC activity have been shown to alter saccades and fixation, but similar manipulations have not been shown to influence smooth-pursuit eye movements. Therefore we both activated (electrical stimulation) and inactivated (reversible chemical injection) rostral SC neurons to establish a causal role for the activity of these neurons in smooth pursuit. First, we stimulated the rostral SC during pursuit initiation as well as pursuit maintenance. For pursuit initiation, stimulation of the rostral SC suppressed pursuit to ipsiversive moving targets primarily and had modest effects on contraversive pursuit. The effect of stimulation on pursuit varied with the location of the stimulation with the most rostral sites producing the most effective inhibition of ipsiversive pursuit. Stimulation was more effective on higher pursuit speeds than on lower and did not evoke smooth-pursuit eye movements during fixation. As with the effects on pursuit initiation, ipsiversive maintained pursuit was suppressed, whereas contraversive pursuit was less affected. The stimulation effect on smooth pursuit did not result from a generalized inhibition because the suppression of smooth pursuit was greater than the suppression of smooth eye movements evoked by head rotations (vestibular-ocular reflex). Nor was the stimulation effect due to the activation of superficial layer visual neurons rather than the intermediate layers of the SC because stimulation of the superficial layers produced effects opposite to those found with intermediate layer stimulation. Second, we inactivated the rostral SC with muscimol and found that contraversive pursuit initiation was reduced and ipsiversive pursuit was increased slightly, changes that were opposite to those resulting from stimulation. The results of both the stimulation and the muscimol injection experiments on pursuit are consistent with the effects of these activation and inactivation experiments on saccades, and the effects on pursuit are consistent with the hypothesis that the SC provides a position signal that is used by the smooth-pursuit eye-movement system.


Subject(s)
Neurons/physiology , Pursuit, Smooth/physiology , Superior Colliculi/cytology , Superior Colliculi/physiology , Animals , Electric Stimulation , GABA Agonists/pharmacology , Haplorhini , Muscimol/pharmacology , Photic Stimulation , Pursuit, Smooth/drug effects , Saccades/physiology , Visual Pathways/cytology , Visual Pathways/physiology
7.
J Neurophysiol ; 84(1): 344-57, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10899209

ABSTRACT

The monkey superior colliculus (SC) has maps for both visual input and movement output in the superficial and intermediate layers, respectively, and activity on these maps is generally related to visual stimuli only in one part of the visual field and/or to a restricted range of saccadic eye movements to those stimuli. For some neurons within these maps, however, activity has been reported to spread from the caudal SC to the rostral SC during the course of a saccade. This spread of activity was inferred from averages of recordings at different sites on the SC movement map during saccades of different amplitudes and even in different monkeys. In the present experiments, SC activity was recorded simultaneously in pairs of neurons to observe the spread of activity during individual saccades. Two electrodes were positioned along the rostral-caudal axis of the SC with one being more caudal than the other, and 60 neuron pairs whose movement fields were large enough to see a spread of activity were studied. During individual saccades, the relative time of discharge of the two neurons was compared using 1) the time difference between peak discharge of the two neurons, 2) the difference between the "median activation time" of the two neurons, and 3) the shift required to align the two discharge patterns using cross-correlation. All three analysis methods gave comparable results. Many pairs of neurons were activated in sequence during saccade generation, and the order of activation was most frequently caudal to rostral. Such a sequence of activation was not observed in every neuron pair, but over the sample of neuron pairs studied, the spread was statistically significant. When we compared the time of neuronal activity to the time of saccade onset, we found that the caudal neuronal activity was more likely to be before the saccade, whereas the rostral neuronal activity was more likely to be during the saccade. These results demonstrate that when individual pairs of neurons are examined during single saccades there is evidence of a caudal to rostral spread of activity within the monkey SC, and they confirm the previous inferences of a spread of activity drawn from observations on averaged neuronal activity during multiple saccades. The functional contribution of this spread of activity remains to be determined.


Subject(s)
Brain Mapping , Superior Colliculi/physiology , Animals , Conditioning, Psychological/physiology , Electrodes, Implanted , Electrophysiology , Macaca mulatta , Neurons/physiology , Saccades/physiology , Superior Colliculi/cytology
8.
Exp Brain Res ; 132(1): 39-51, 2000 May.
Article in English | MEDLINE | ID: mdl-10836634

ABSTRACT

We investigated and quantified the ability of the primate saccadic system to generate accurate eye movements in spite of naturally occurring variations in saccadic speed and trajectory. We show that the amplitude of a series of saccades directed to the same target is positively correlated to their peak speed, i.e., the faster the saccade, the bigger its amplitude. We demonstrate that this result cannot be simply accounted for by the main sequence, and that on average the saccadic system is able to compensate for only 61% of the variability in speed. Deviations from the average trajectory are also only partially compensated: the underlying mechanism, which tends to bring the eyes back toward the desired trajectory, underperforms for small movements and overperforms for large movements. We also demonstrate that the performance of this compensatory mechanism, and the metrics of saccades in general, do not depend on the presence of visual information during the movement. By showing that deviations from the desired behavior are corrected during the saccade, our results further support the hypothesis that the innervation signal that generates saccadic eye movements is not pre-programmed but rather is dynamically adjusted during the movement. However, the compensation for deviations from the desired behavior is only partial, and the underlying mechanisms have yet to be completely understood. Although none of the current models of the saccadic system can account for our results, some of them, if appropriately modified, probably could.


Subject(s)
Adaptation, Physiological/physiology , Saccades/physiology , Animals , Macaca mulatta , Male , Photic Stimulation/methods , Time Factors , Vision, Ocular/physiology
9.
J Neurophysiol ; 83(4): 1979-2001, 2000 Apr.
Article in English | MEDLINE | ID: mdl-10758109

ABSTRACT

The frontal eye field (FEF) and superior colliculus (SC) contribute to saccadic eye movement generation, and much of the FEF's oculomotor influence may be mediated through the SC. The present study examined the composition and topographic organization of signals flowing from FEF to SC by recording from FEF neurons that were antidromically activated from rostral or caudal SC. The first and most general result was that, in a sample of 88 corticotectal neurons, the types of signals relayed from FEF to SC were highly diverse, reflecting the general population of signals within FEF rather than any specific subset of signals. Second, many neurons projecting from FEF to SC carried signals thought to reflect cognitive operations, namely tonic discharges during the delay period of a delayed-saccade task (delay signals), elevated discharges during the gap period of a gap task (gap increase signals), or both. Third, FEF neurons discharging during fixation were found to project to the SC, although they did not project preferentially to rostral SC, where similar fixation neurons are found. Neurons that did project preferentially to the rostral SC were those with foveal visual responses and those pausing during the gap period of the gap task. Many of the latter neurons also had foveal visual responses, presaccadic pauses in activity, and postsaccadic increases in activity. These two types of rostral-projecting neurons therefore may contribute to the activity of rostral SC fixation neurons. Fourth, conduction velocity was used as an indicator of cell size to correct for sampling bias. The outcome of this correction procedure suggested that among the most prevalent neurons in the FEF corticotectal population are those carrying putative cognitive-related signals, i.e., delay and gap increase signals, and among the least prevalent are those carrying presaccadic burst discharges but lacking peripheral visual responses. Fifth, corticotectal neurons carrying various signals were biased topographically across the FEF. Neurons with peripheral visual responses but lacking presaccadic burst discharges were biased laterally, neurons with presaccadic burst discharges but lacking peripheral visual responses were biased medially, and neurons carrying delay or gap increase signals were biased dorsally. Finally, corticotectal neurons were distributed within the FEF as a function of their visual or movement field eccentricity and projected to the SC such that eccentricity maps in both structures were closely aligned. We conclude that the FEF most likely influences the activity of SC neurons continuously from the start of fixation, through visual analysis and cognitive manipulations, until a saccade is generated and fixation begins anew. Furthermore, the projection from FEF to SC is highly topographically organized in terms of function at both its source and its termination.


Subject(s)
Brain Mapping , Frontal Lobe/cytology , Frontal Lobe/physiology , Saccades/physiology , Superior Colliculi/cytology , Superior Colliculi/physiology , Animals , Axons/physiology , Electric Stimulation , Fixation, Ocular/physiology , Fovea Centralis/cytology , Fovea Centralis/physiology , Macaca mulatta , Motor Neurons/physiology , Motor Neurons/ultrastructure , Neural Conduction/physiology , Neurons, Afferent/physiology , Neurons, Afferent/ultrastructure , Reaction Time/physiology , Visual Fields/physiology , Visual Pathways/cytology , Visual Pathways/physiology
10.
J Neurophysiol ; 83(2): 777-90, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10669493

ABSTRACT

The responses of neurons in monkey extrastriate areas MT (middle temporal) and MST (medial superior temporal), and the initial metrics of saccadic and pursuit eye movements, have previously been shown to be better predicted by vector averaging or winner-take-all models depending on the stimulus conditions. To investigate the potential influences of attention on the neuronal activity, we measured the responses of single MT and MST neurons under identical stimulus conditions when one of two moving stimuli was the target for a pursuit eye movement. We found the greatest attentional modulation across neurons when two stimuli moved through the receptive field (RF) of the neuron and the stimulus motion was initiated at least 450 ms before reaching the center of the RF. These conditions were the same as those in which a winner-take-all model better predicted both the eye movements and the underlying neuronal activity. The modulation was almost always an increase of activity, and it was about equally frequent in MT and MST. A modulation of >50% was observed in approximately 41% of MT neurons and 27% of MST neurons. Responses to all directions of motion were modulated so that the direction tuning curves in the attended and unattended conditions were similar. Changes in the background activity with target selection were small and unlikely to account for the observed attentional modulation. In contrast, there was little change in the neuronal response with attention when the stimulus reached the RF center 150 ms after motion onset, which was also the condition in which the vector average model better predicted the initial eye movements and the activity of the neurons. These results are consistent with a competition model of attention in which top-down attention acts on the activity of one of two competing populations of neurons activated by the bottom-up input from peripheral stimuli. They suggest that there is a minimal separation of the populations necessary before attention can act on one population, similar to that required to produce a winner-take-all mode of behavior in pursuit initiation. The present experiments also suggest that it takes several hundred milliseconds to develop this top-down attention effect.


Subject(s)
Attention/physiology , Neurons/physiology , Pursuit, Smooth/physiology , Temporal Lobe/physiology , Visual Cortex/physiology , Animals , Form Perception/physiology , Functional Laterality/physiology , Macaca mulatta , Male , Photic Stimulation , Temporal Lobe/cytology , Visual Cortex/cytology
11.
J Neurophysiol ; 83(1): 625-9, 2000 Jan.
Article in English | MEDLINE | ID: mdl-10634901

ABSTRACT

Information about depth is necessary to generate saccades to visual stimuli located in three-dimensional space. To determine whether monkey frontal eye field (FEF) neurons play a role in the visuo-motor processes underlying this behavior, we studied their visual responses to stimuli at different disparities. Disparity sensitivity was tested from 3 degrees of crossed disparity (near) to 3 degrees degrees of uncrossed disparity (far). The responses of about two thirds of FEF visual and visuo-movement neurons were sensitive to disparity and showed a broad tuning in depth for near or far disparities. Early phasic and late tonic visual responses often displayed different disparity sensitivity. These findings provide evidence of depth-related signals in FEF and suggest a role for FEF in the control of disconjugate as well as conjugate eye movements.


Subject(s)
Neurons/physiology , Psychomotor Performance/physiology , Saccades/physiology , Superior Colliculi/physiology , Vision Disparity/physiology , Visual Fields/physiology , Animals , Brain Mapping , Depth Perception/physiology , Fixation, Ocular , Macaca mulatta , Magnetic Resonance Imaging , Male , Photic Stimulation , Reaction Time , Vision, Binocular/physiology
12.
J Neurophysiol ; 82(5): 2462-75, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10561419

ABSTRACT

Many neurons in the lateral-ventral region of the medial superior temporal area (MSTl) have a clear center surround separation in their receptive fields. Either moving or stationary stimuli in the surround modulates the response to moving stimuli in the center, and this modulation could facilitate the perceptual segmentation of a moving object from its background. Another mechanism that could facilitate such segmentation would be sensitivity to binocular disparity in the center and surround regions of the receptive fields of these neurons. We therefore investigated the sensitivity of these MSTl neurons to disparity ranging from three degrees crossed disparity (near) to three degrees uncrossed disparity (far) applied to both the center and the surround regions. Many neurons showed clear disparity sensitivity to stimulus motion in the center of the receptive field. About (1)/(3) of 104 neurons had a clear peak in their response, whereas another (1)/(3) had broader tuning. Monocular stimulation abolished the tuning. The prevalence of cells broadly tuned to near and far disparity and the reversal of preferred directions at different disparities observed in MSTd were not found in MSTl. A stationary surround at zero disparity simply modulated up or down the response to moving stimuli at different disparities in the receptive field (RF) center but did not alter the disparity tuning curve. When the RF center motion was held at zero disparity and the disparity of the stationary surround was varied, some surround disparities produced greater modulation of MSTl neuron response than did others. Some neurons with different disparity preferences in center and surround responded best to the relative disparity differences between center and surround, whereas others were related to the absolute difference between center and surround. The combination of modulatory surrounds and the sensitivity to relative difference between center and surround disparity make these MSTl neurons particularly well suited for the segmentation of a moving object from the background.


Subject(s)
Motion Perception/physiology , Neurons/physiology , Vision Disparity/physiology , Visual Cortex/physiology , Analysis of Variance , Animals , Brain Mapping , Color Perception , Macaca mulatta , Male , Photic Stimulation , Regression Analysis , Visual Fields
13.
J Neurophysiol ; 82(4): 1710-27, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10515961

ABSTRACT

The activity of neurons in extrastriate middle temporal (MT) and medial superior temporal (MST) areas were studied during the initiation of pursuit eye movements in macaque monkeys. The intersecting motion of two stimuli was used to test hypotheses about how these direction- and speed-sensitive neurons contribute to the generation of pursuit. The amplitude and direction of the initial saccade to the target and the initial speed and direction of pursuit were best predicted by a vector-average model of the underlying neuronal activity with relatively short time and spatial separation before a visual pursuit target and a distracter stimulus crossed in the visual field. The resulting eye movements were best described by a winner-take-all model when the time and spatial separation between the two stimuli was increased before the stimuli crossed. Neurons in MT and MST also shifted their activity from that best described by a vector average to a winner-take-all model under the same stimulus conditions. The changes in activity of neurons in both areas were generally similar to each other during these changes in pursuit initiation. Thus a slight alteration in the target motion produced a concurrent shift in both the neuronal processing and the movement execution. We propose that the differences in the oculomotor behavior can be accounted for by shifts in the overlap of active neuronal populations within MT and MST.


Subject(s)
Neurons/physiology , Pattern Recognition, Visual/physiology , Pursuit, Smooth/physiology , Temporal Lobe/physiology , Analysis of Variance , Animals , Contrast Sensitivity , Fixation, Ocular , Macaca mulatta , Male , Models, Neurological , Reaction Time , Regression Analysis
14.
J Neurophysiol ; 80(6): 3331-5, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9862927

ABSTRACT

Frontal eye field neurons orthodromically activated from the superior colliculus. J. Neurophysiol. 80: 3331-3333, 1998. Anatomical studies have shown that the frontal eye field (FEF) and superior colliculus (SC) of monkeys are reciprocally connected, and a physiological study described the signals sent from the FEF to the SC. Nothing is known, however, about the signals sent from the SC to the FEF. We physiologically identified and characterized FEF neurons that are likely to receive input from the SC. Fifty-two FEF neurons were found that were orthodromically activated by electrical stimulation of the intermediate or deeper layers of the SC. All the neurons that we tested (n = 34) discharged in response to visual stimulation. One-half also discharged when saccadic eye movements were made. This provides the first direct evidence that the ascending pathway from SC to FEF might carry visual- and saccade-related signals. Our findings support a hypothesis that the SC and the FEF interact bidirectionally during the events leading up to saccade generation.


Subject(s)
Neurons/physiology , Superior Colliculi/physiology , Visual Fields/physiology , Animals , Electric Stimulation , Electrodes, Implanted , Macaca mulatta , Photic Stimulation , Saccades/physiology , Synapses/physiology , Visual Pathways/physiology
15.
J Neurosci ; 18(18): 7519-34, 1998 Sep 15.
Article in English | MEDLINE | ID: mdl-9736670

ABSTRACT

Complex visual scenes require that a target for an impending saccadic eye movement be selected from a larger number of possible targets. We investigated whether changing the probability that a visual stimulus would be selected as the target for a saccade altered activity of monkey superior colliculus (SC) neurons in two experiments. First, we changed the number of possible targets on each trial. Second, we kept the visual display constant and presented a single saccade target repeatedly so that target probability was established over time. Buildup neurons in the SC, those with delay period activity, showed a consistent reduction in activity as the probability of the saccade decreased, independent of the visual stimulus configuration. Other SC neurons, fixation and burst, were largely unaffected by the changes in saccade target probability. Because we had monkeys making saccades to many locations within the visual field, we could examine activity associated with saccades outside of the movement field of neurons. We found the activity of buildup neurons to be similar across the SC, before the target was identified, and reduced when the number of possible targets increased. The results of our experiments are consistent with a role for this activity in establishing a motor set. We found, consistent with this interpretation, that the activity of these neurons was predictive of the latency of a saccadic eye movement and not other saccade parameters such as end point or peak velocity.


Subject(s)
Motor Neurons/physiology , Saccades/physiology , Superior Colliculi/physiology , Animals , Electrophysiology , Fixation, Ocular/physiology , Functional Laterality/physiology , Haplorhini , Periodicity , Photic Stimulation , Reaction Time/physiology , Superior Colliculi/cytology
16.
J Neurosci Methods ; 81(1-2): 185-8, 1998 Jun 01.
Article in English | MEDLINE | ID: mdl-9696324

ABSTRACT

A screw microdrive is described that attaches to the grid system used for recording single neurons from brains of awake behaving monkeys. Multiple screwdrives can be mounted on a grid over a single cranial opening. This method allows many electrodes to be implanted chronically in the brain and adjusted as needed to maintain isolation. rights reserved.


Subject(s)
Electrophysiology/instrumentation , Microelectrodes , Time , Animals , Brain , Electrodes, Implanted , Equipment Design , Haplorhini , Neocortex/physiology , Neurons/physiology , Superior Colliculi/physiology , Wakefulness
17.
Curr Biol ; 8(16): R554-6, 1998.
Article in English | MEDLINE | ID: mdl-9707391

ABSTRACT

The visual motion - or optic flow - that results from an observer's own movement can indicate the direction of heading through the environment. Recent experiments have strengthened the argument that neurons in a specialized region of the cerebral cortex are critical for the analysis of this important class of visual stimuli.


Subject(s)
Brain Mapping , Cerebral Cortex/physiology , Motion Perception/physiology , Neurons/physiology , Animals , Humans , Photic Stimulation , Visual Cortex/physiology
18.
J Neurophysiol ; 80(1): 282-96, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9658050

ABSTRACT

The medial superior temporal area of the macaque monkey extrastriate visual cortex can be divided into a dorsal medial (MSTd) and a lateral ventral (MSTl) region. The functions of the two regions may not be identical: MSTd may process optic flow information that results from the movement of the observer, whereas MSTl may be related more closely to processing visual motion related specifically to the motion of objects. If MSTl were related to such object motion, one would expect to see mechanisms for the segregation of objects from their surround. We investigated one of these mechanisms in MSTl neurons: the effect of stimuli falling in the region surrounding the receptive field center on the response to stimuli falling in the field center. We found the effects of the surround stimulation to be modulatory with little response to the surround stimulus itself but a clear effect on the response to the stimulus falling on the receptive field center. The response to motion in the center in the direction preferred for the neuron usually increased when the surround motion was in the opposite direction to that in the center and decreased when surround motion was in the same direction as that in the center. Fifty-seven percent of the neurons showed a ratio of response for center motion with a surround moving in the opposite direction to that in the center for center motion alone that was >1. The response to motion in the center also increased when the surround stimulus was stationary, and this increase was sometimes larger than that with a moving surround. Nearly 70% of the neurons showed a ratio of response to center motion with a stationary surround to center motion alone that was >1. This is in contrast to the minimal effect of stationary surrounds in middle temporal area neurons. When the stimulus presentation was reversed so that the stimulus in the center was stationary and the surround moved, some MSTl neurons responded when the direction of motion in the surround was in the direction opposite to the preferred direction of motion in the center of the receptive field. Stimulation of the surround thus had a profound effect on the response of MSTl neurons, and this pronounced effect of the surround is consistent with a role in the segmentation of objects using motion.


Subject(s)
Brain Mapping , Motion Perception/physiology , Neurons/physiology , Visual Cortex/physiology , Animals , Macaca mulatta , Male , Pattern Recognition, Visual , Photic Stimulation , Time Factors
19.
J Neurophysiol ; 79(4): 2082-96, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9535970

ABSTRACT

The neurons in the intermediate layers of the monkey superior colliculus (SC) that discharge before saccadic eye movements can be divided into at least two types, burst and buildup neurons, and the differences in their characteristics are compatible with different functional contributions of the two cell types. It has been suggested that a spread of activity across the population of the buildup neurons during saccade generation may contribute to the control of saccadic eye movements. The influence of any such spread should be on both the horizontal and vertical components of the saccade because the map of the movement fields on the SC is a two-dimensional one; it should affect the trajectory of saccade. The present experiments used muscimol injections to inactivate areas within the SC to determine the functional contribution of such a spread of activity on the trajectory of the saccades. The analysis concentrated on saccades made to areas of the visual field that should be affected primarily by alteration of buildup neuron activity. Muscimol injections produced saccades with altered trajectories; they became consistently curved after the injection, and successive saccades to the same targets had similar curvatures. The curved saccades showed changes in their direction and speed at the very beginning of the saccade, and for those saccades that reached the target, the direction of the saccade was altered near the end to compensate for the initially incorrect direction. Postinjection saccades had lower peak speeds, longer durations, and longer latencies for initiation. The changes in saccadic trajectories resulting from muscimol injections, along with the previous observations on changes in speed of saccades with such injections, indicate that the SC is involved in influencing the eye position during the saccade as well as at the end of the saccade. The changes in trajectory when injections were made more rostral in the SC than the most active burst neurons also are consistent with a contribution of the buildup neurons to the control of the eye trajectory. The results do not, however, support the hypothesis that the buildup neurons in the SC act as a spatial integrator.


Subject(s)
GABA Agonists/pharmacology , Muscimol/pharmacology , Saccades/drug effects , Superior Colliculi/drug effects , Animals , Macaca mulatta , Male , Microinjections , Reaction Time/drug effects
20.
J Neurophysiol ; 79(4): 2097-110, 1998 Apr.
Article in English | MEDLINE | ID: mdl-9535971

ABSTRACT

Neurons in the superior colliculus (SC) are organized as maps of visual and motor space. The companion paper showed that muscimol injections into intermediate layers of the SC alter the trajectory of the movement and confirmed previously reported effects on latency, amplitude, and speed of saccades. In this paper we analyze the pattern of these deficits across the visual field by systematically comparing the magnitude of each deficit throughout a grid of targets covering a large fraction of the visual field. We also translate these deficits onto the SC map of the visual/movement fields to obtain a qualitative estimate of the extent of the deficit in the SC. We found a consistent pattern of substantially increased saccadic latency to targets in the contralateral visual hemifield, accompanied by slight and inconsistent increases and decreases for saccades to the ipsilateral hemifield. The initial and peak speed of saccades was reduced after the injection. The postinjection amplitude of the saccades were either hypometric or normometric, but rarely hypermetric. Although errors in the initial direction of the postinjection saccades were small, they consistently formed a simple pattern: an initial direction with minimal errors (a null direction) separating regions with clockwise and counterclockwise rotations of the initial direction. However, the null direction did not go through the center of the inactivated zone, as would be expected if the SC alone were determining saccade direction, e.g., with a population code. One hypothesis that can explain the misalignment of the null direction with the lesion site is that another system, acting in parallel with the SC, contributes to the determination of saccadic trajectory.


Subject(s)
Brain Mapping , GABA Agonists/pharmacology , Muscimol/pharmacology , Saccades/drug effects , Superior Colliculi/drug effects , Animals , Macaca mulatta , Reaction Time/drug effects , Reproducibility of Results , Visual Fields/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...