Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
New Phytol ; 243(1): 132-144, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38742309

ABSTRACT

Nutrient limitation may constrain the ability of recovering and mature tropical forests to serve as a carbon sink. However, it is unclear to what extent trees can utilize nutrient acquisition strategies - especially root phosphatase enzymes and mycorrhizal symbioses - to overcome low nutrient availability across secondary succession. Using a large-scale, full factorial nitrogen and phosphorus fertilization experiment of 76 plots along a secondary successional gradient in lowland wet tropical forests of Panama, we tested the extent to which root phosphatase enzyme activity and mycorrhizal colonization are flexible, and if investment shifts over succession, reflective of changing nutrient limitation. We also conducted a meta-analysis to test how tropical trees adjust these strategies in response to nutrient additions and across succession. We find that tropical trees are dynamic, adjusting investment in strategies - particularly root phosphatase - in response to changing nutrient conditions through succession. These changes reflect a shift from strong nitrogen to weak phosphorus limitation over succession. Our meta-analysis findings were consistent with our field study; we found more predictable responses of root phosphatase than mycorrhizal colonization to nutrient availability. Our findings suggest that nutrient acquisition strategies respond to nutrient availability and demand in tropical forests, likely critical for alleviating nutrient limitation.


Subject(s)
Forests , Mycorrhizae , Nitrogen , Nutrients , Phosphorus , Trees , Tropical Climate , Phosphorus/metabolism , Nitrogen/metabolism , Mycorrhizae/physiology , Nutrients/metabolism , Plant Roots/metabolism , Plant Roots/microbiology , Phosphoric Monoester Hydrolases/metabolism , Panama
2.
Sci Total Environ ; 893: 164915, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37331405

ABSTRACT

Urbanization is altering the co-occurrence networks of ecological communities that are critical to maintaining ecosystem functions and services. Soil microbial communities play key roles in various ecosystem processes, but how soil microbial co-occurrence networks respond to urbanization is unclear. Here we analyzed co-occurrence networks in soil archaeal, bacterial, and fungal communities from 258 soil sampling sites across the megacity of Shanghai along large urbanization gradients. We found that topological features of microbial co-occurrence networks were strongly altered by urbanization. In particular, microbial communities in more urbanized land-use and highly impervious land cover had less connected and more isolated network structures. These structural variations were accompanied by the dominance of connectors and module hubs affiliated with the Ascomycota in fungi and Chloroflexi in bacteria, and there were greater losses in efficiency and connectivity in urbanized than in remnant land-use in simulated disturbances. Furthermore, even though soil properties (especially soil pH and organic carbon) were major factors shaping topological features of the microbial networks, urbanization still uniquely explained a proportion of the variability, particularly those describing network connections. These results demonstrate that urbanization has clear direct and indirect effects on microbial networks and provide novel insights into how urbanization alters soil microbial communities.


Subject(s)
Microbiota , Soil , Soil/chemistry , Ecosystem , Urbanization , Soil Microbiology , China , Bacteria , Fungi
3.
Oecologia ; 201(2): 565-574, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36637524

ABSTRACT

Symbiotic nitrogen fixation (SNF) is a critical mechanism of ecosystem recovery, and in forests of the eastern United States, the most common tree species that supports SNF is black locust (Robinia pseudoacacia L.). Despite its prevalence, black locust's fixation strategy-whether it maintains fixation at a constant rate (obligate fixation) or reduces its fixation rate (facultative fixation)-is unknown. Here, we examined how nitrogen and light control SNF by black locust, by growing seedlings under two nitrogen levels and across four levels of light. Seedlings were harvested after 12 weeks to determine biomass changes, nodule activity, and photosynthetic rates. Black locust seedlings increased biomass growth with increasing light, but only in the absence of nitrogen addition, while seedling root:shoot (biomass) modestly declined with increasing light regardless of nitrogen level. We found that black locust behaved like a facultative fixer, and regulated fixation by excising or maintaining nodules, and by controlling nodule biomass and activity. Specifically, nitrogen addition reduced seedling investment in nodule biomass (g g-1) by 63%, and reduced seedling allocation to nitrogen fixation (µmol C2H4 g-1 h-1) by 66%. In contrast, light affected nitrogen fixation through two indirect pathways. First, light increased plant growth, and hence nitrogen demands, which caused an increase in nitrogen fixation proportional to biomass. Second, light increasd photosynthetic activity, which was positively associated with nodule activity, but only in the absence of nitrogen addition. Our findings for how black locust regulates SNF can improve predictions of ecosystem SNF under the changing environmental conditions.


Subject(s)
Robinia , Trees , Trees/physiology , Ecosystem , Nitrogen/metabolism , Nitrogen Fixation , Forests , Seedlings , Robinia/metabolism
4.
Ecology ; 104(3): e3929, 2023 03.
Article in English | MEDLINE | ID: mdl-36424763

ABSTRACT

As global change shifts the species composition of forests, we need to understand which species characteristics affect soil organic matter (SOM) cycling to predict future soil carbon (C) storage. Recently, whether a tree species forms a symbiosis with arbuscular (AM) versus ectomycorrhizal (EcM) fungi has been suggested as a strong predictor of soil C storage, but there is wide variability within EcM systems. In this study, we investigated how mycorrhizal associations and the species composition of canopy trees and mycorrhizal fungi related to the proportion of soil C and nitrogen (N) in mineral associations and soil C:N across four sites representing distinct climates and tree communities in the eastern US broadleaf forest biome. In two of our sites, we found the expected relationship of declining mineral-associated C and N and increasing soil C:N ratios as the basal area of EcM-associating trees increased. However, across all sites these soil properties strongly correlated with canopy tree and fungal species composition. Sites where the expected pattern with EcM basal area was observed were (1) dominated by trees with lower quality litter in the Pinaceae and Fagaceae families and (2) dominated by EcM fungi with medium-distance exploration type hyphae, melanized tissues, and the potential to produce peroxidases. This observational study demonstrates that differences in SOM between AM and EcM systems are dependent on the taxa of trees and EcM fungi involved. Important information is lost when the rich mycorrhizal symbiosis is reduced to two categories.


Subject(s)
Mycorrhizae , Trees , Humans , Trees/microbiology , Soil , Forests , Ecosystem , Soil Microbiology
6.
New Phytol ; 232(3): 973-1122, 2021 11.
Article in English | MEDLINE | ID: mdl-34608637

ABSTRACT

In the context of a recent massive increase in research on plant root functions and their impact on the environment, root ecologists currently face many important challenges to keep on generating cutting-edge, meaningful and integrated knowledge. Consideration of the below-ground components in plant and ecosystem studies has been consistently called for in recent decades, but methodology is disparate and sometimes inappropriate. This handbook, based on the collective effort of a large team of experts, will improve trait comparisons across studies and integration of information across databases by providing standardised methods and controlled vocabularies. It is meant to be used not only as starting point by students and scientists who desire working on below-ground ecosystems, but also by experts for consolidating and broadening their views on multiple aspects of root ecology. Beyond the classical compilation of measurement protocols, we have synthesised recommendations from the literature to provide key background knowledge useful for: (1) defining below-ground plant entities and giving keys for their meaningful dissection, classification and naming beyond the classical fine-root vs coarse-root approach; (2) considering the specificity of root research to produce sound laboratory and field data; (3) describing typical, but overlooked steps for studying roots (e.g. root handling, cleaning and storage); and (4) gathering metadata necessary for the interpretation of results and their reuse. Most importantly, all root traits have been introduced with some degree of ecological context that will be a foundation for understanding their ecological meaning, their typical use and uncertainties, and some methodological and conceptual perspectives for future research. Considering all of this, we urge readers not to solely extract protocol recommendations for trait measurements from this work, but to take a moment to read and reflect on the extensive information contained in this broader guide to root ecology, including sections I-VII and the many introductions to each section and root trait description. Finally, it is critical to understand that a major aim of this guide is to help break down barriers between the many subdisciplines of root ecology and ecophysiology, broaden researchers' views on the multiple aspects of root study and create favourable conditions for the inception of comprehensive experiments on the role of roots in plant and ecosystem functioning.


Subject(s)
Ecosystem , Plants , Databases, Factual , Ecology , Phenotype
7.
New Phytol ; 232(3): 1123-1158, 2021 11.
Article in English | MEDLINE | ID: mdl-33159479

ABSTRACT

The effects of plants on the biosphere, atmosphere and geosphere are key determinants of terrestrial ecosystem functioning. However, despite substantial progress made regarding plant belowground components, we are still only beginning to explore the complex relationships between root traits and functions. Drawing on the literature in plant physiology, ecophysiology, ecology, agronomy and soil science, we reviewed 24 aspects of plant and ecosystem functioning and their relationships with a number of root system traits, including aspects of architecture, physiology, morphology, anatomy, chemistry, biomechanics and biotic interactions. Based on this assessment, we critically evaluated the current strengths and gaps in our knowledge, and identify future research challenges in the field of root ecology. Most importantly, we found that belowground traits with the broadest importance in plant and ecosystem functioning are not those most commonly measured. Also, the estimation of trait relative importance for functioning requires us to consider a more comprehensive range of functionally relevant traits from a diverse range of species, across environments and over time series. We also advocate that establishing causal hierarchical links among root traits will provide a hypothesis-based framework to identify the most parsimonious sets of traits with the strongest links on functions, and to link genotypes to plant and ecosystem functioning.


Subject(s)
Ecosystem , Plants , Atmosphere , Ecology , Phenotype
8.
Ecology ; 100(12): e02862, 2019 12.
Article in English | MEDLINE | ID: mdl-31386760

ABSTRACT

Increased drought intensity and frequency due to climate change may reduce the abundance and activity of nitrogen (N2 )-fixing plants, which supply new N to terrestrial ecosystems. As a result, drought may indirectly reduce ecosystem productivity through its effect on the N cycle. Here, we manipulated growing season net rainfall across a series of plots in an early successional mesic deciduous forest to understand how drought affects the aboveground productivity of the N2 -fixing tree Robinia pseudoacacia and three co-occurring nonfixing tree species. We found that lower soil moisture was associated with reduced productivity of R. pseudoacacia but not of nonfixing trees. As a result, the relative biomass and density of R. pseudoacacia declined in drier soils over time. Greater aboveground biomass of R. pseudoacacia was also associated with greater total soil N, extractable inorganic N, N mineralization rates, and productivity of nonfixing trees. These soil N effects may reflect current N2 fixation by R. pseudoacacia saplings, or the legacy effect of former trees in the same location. Our results suggest that R. pseudoacacia promotes the growth of nonfixing trees in early succession through its effect on the N cycle. However, the sensitivity of R. pseudoacacia to dry soils may reduce N2 fixation under scenarios of increasing drought intensity and frequency, demonstrating a mechanism by which drought may indirectly diminish potential forest productivity and recovery rate from disturbance.


Subject(s)
Droughts , Trees , Ecosystem , Forests , Nitrogen Fixation , Soil
9.
Sci Rep ; 9(1): 7571, 2019 05 20.
Article in English | MEDLINE | ID: mdl-31110241

ABSTRACT

Symbiotic nitrogen (N) fixation has been shown to support carbon storage in young regenerating tropical forests, but N-fixing trees can also be strong competitors with non-fixing trees, making it unclear which mechanism drives long term patterns in biomass accretion. Many tropical forests have excess N, but factors such as rising atmospheric CO2 or selective cutting practices might induce additional N demand. Here we combine decades of stem inventory data, in-situ measures of symbiotic N fixation, and simulations of N demand to evaluate demographic and biogeochemical controls on biomass dynamics in legume-rich lowland forests of Trinidad. We document sustained net biomass accumulation and high rates of N fixation in these forests, regardless of the timing of selective timber harvests, including an old growth stand. The biomass accumulation was explained by growth of non-fixing trees, not N-fixing trees, but the total amount of symbiotic N fixation was sufficient to account for most of net above ground N demands, suggesting that N-fixers could contribute to the long-term C sink in these forests via fertilizing non-fixers.

10.
Ecology ; 100(7): e02735, 2019 07.
Article in English | MEDLINE | ID: mdl-30991444

ABSTRACT

Fire is a critical force in structuring ecosystems, but it also removes substantial amounts of nitrogen (N), which can limit plant growth. Biological N fixation (BNF) may alleviate fire-induced N deficiencies that inhibit ecosystem recovery, yet if and how BNF achieves this under frequent fire is unclear. This problem is further complicated in the context of modern human influences (such as land-use history and atmospheric N deposition), which may confound the relationship between fire and fixation. Here, we investigate whether BNF supplies the N necessary to replace fire-induced N losses in restored longleaf pine savannas, and, if so, what factors control fixation. We established 54 1-ha plots of longleaf pine capturing 227 yr of forest recovery and a broad gradient of fire return interval (1.5-20 yr) at two sites in the southeastern United States. We quantified N fixation from three functional groups (herbaceous legumes, soil crusts, and asymbiotic N fixing bacteria), N losses from individual fire events and ecosystem dynamics of N supply and demand. We found that BNF rates were low but sustained over stand age but were substantially below estimated rates of atmospheric N deposition. While fire temporarily stimulated BNF from herbaceous legumes, neither BNF nor atmospheric N deposition were sufficient to balance N losses from fire and soil N stocks declined over stand age. However, rates of N mineralization were surprisingly high and tree productivity was unrelated to N availability, questioning the importance of N limitation in these temperate savannas. While it is possible that progressive N losses signal a decline in ecosystem resiliency, N enrichment from multiple land-use transitions and anthropogenic N deposition may suppress rates of BNF or diminish its importance as a long-term N balancing source in these pyrogenic ecosystems. In this case, fire may be acting as relief mechanism, critical for returning the modern longleaf pine landscape to its historical oligotrophic condition.


Subject(s)
Fires , Nitrogen Fixation , Ecosystem , Grassland , Nitrogen , Soil
11.
Oecologia ; 187(1): 281-290, 2018 05.
Article in English | MEDLINE | ID: mdl-29603096

ABSTRACT

Longleaf pine savannas house a diverse community of herbaceous N2-fixing legume species that have the potential to replenish nitrogen (N) losses from fire. Whether legumes fill this role depends on the factors that regulate symbiotic fixation, including soil nutrients such as phosphorus (P) and molybdenum (Mo) and the growth and fixation strategies of different species. In greenhouse experiments, we determined how these factors influence fixation for seven species of legumes grown in pure field soil from two different regions of the southeastern US longleaf pine ecosystem. We first added P and Mo individually and in combination, and found that P alone constrained fixation. Phosphorus primarily influenced fixation by regulating legume growth. Second, we added N to plants and found that species either downregulated fixation (facultative strategy) or maintained fixation at a constant rate (obligate strategy). Species varied nearly fourfold in fixation rate, reflecting differences in growth rate, taxonomy and fixation strategy. However, fixation responded strongly to P addition across all species in our study, suggesting that the P cycle regulates N inputs by herbaceous legumes.


Subject(s)
Fabaceae , Phosphorus , Ecosystem , Grassland , Nitrogen , Nitrogen Fixation
12.
Ecology ; 98(6): 1491-1497, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28369878

ABSTRACT

Most land plants acquire nitrogen (N) through associations with arbuscular (AM) and ectomycorrhizal (ECM) fungi, but these symbionts employ contrasting strategies for N acquisition, which may lead to different stocks of soil carbon (C). We experimentally test this hypothesis with a mesocosm system where AM and ECM tree seedling roots, or their hyphae only, could access mineral soils with 13 C- and 15 N-enriched organic matter. We quantified loss of soil C and N, plant uptake of N and new inputs of plant C to soil. We found that AM, but not ECM, seedlings reduced soil C relative to controls. Soil C loss was greater in the presence of roots relative to hyphae only for both AM and ECM seedlings, but was correlated with plant N uptake for AM seedlings only. While new plant C inputs stimulated soil C loss in both symbioses, we detected plant C inputs more frequently and measured higher rates of decomposer activity in soils colonized by AM relative to ECM seedlings. Our study experimentally demonstrates how mycorrhizal strategies for N can affect soil C and C:N, even at the scale of an individual plant. Such effects may contribute to broad patterns in soil C across terrestrial ecosystems.


Subject(s)
Carbon/metabolism , Mycorrhizae/physiology , Nitrogen/metabolism , Soil/chemistry , Carbon/analysis , Plant Roots , Soil Microbiology
13.
New Phytol ; 215(1): 434-442, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28394097

ABSTRACT

Climate change is increasing drought frequency, which may affect symbiotic N2 fixation (SNF), a process that facilitates ecosystem recovery from disturbance. Here, we assessed the effect of drought frequency on the ecophysiology and SNF rate of a common N2 -fixing tree in eastern US forests. We grew Robinia pseudoacacia seedlings under the same mean soil moisture, but with different drought frequency caused by wet-dry cycles of varying periodicity. We found no effect of drought frequency on final biomass or mean SNF rate. However, seedlings responded differently to wet and dry phases depending on drought frequency. Under low-frequency droughts, plants fixed carbon (C) and nitrogen (N) at similar rates during wet and dry phases. Conversely, under high-frequency droughts, plants fixed C and N at low rates during dry phases and at high rates during wet phases. Our findings suggest that R. pseudoacacia growth is resistant to increased drought frequency because it employs two strategies - drought tolerance or drought avoidance, followed by compensation. SNF may play a role in both by supplying N to leaf tissues for acclimation and by facilitating compensatory growth following drought. Our findings point to SNF as a mechanism for plants and ecosystems to cope with drought.


Subject(s)
Droughts/statistics & numerical data , Nitrogen Fixation , Robinia/growth & development , Trees/physiology , Nitrogen/metabolism , Plant Leaves/metabolism , Robinia/physiology
15.
Ecol Lett ; 19(5): 587-90, 2016 May.
Article in English | MEDLINE | ID: mdl-27040899
16.
New Phytol ; 210(2): 374-6, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27000954

Subject(s)
Forests , Nitrogen , Bacteria , Ecosystem , Trees
17.
Ecol Lett ; 19(1): 62-70, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26584690

ABSTRACT

Legumes capable of fixing atmospheric N2 are abundant and diverse in many tropical forests, but the factors determining ecological patterns in fixation are unresolved. A long-standing idea is that fixation depends on soil nutrients (N, P or Mo), but recent evidence shows that fixation may also differ among N2-fixing species. We sampled canopy-height trees across five species and one species group of N2-fixers along a landscape P gradient, and manipulated P and Mo to seedlings in a shadehouse. Our results identify taxonomy as the major determinant of fixation, with P (and possibly Mo) only influencing fixation following tree-fall disturbances. While 44% of trees did not fix N2, other trees fixed at high rates, with two species functioning as superfixers across the landscape. Our results raise the possibility that fixation is determined by biodiversity, evolutionary history and species-specific traits (tree growth rate, canopy stature and response to disturbance) in the tropical biome.


Subject(s)
Fabaceae/metabolism , Mycorrhizae/physiology , Nitrogen Fixation , Trees/metabolism , Fabaceae/classification , Fabaceae/microbiology , Forests , Molybdenum/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Phylogeny , Soil/chemistry , Trees/classification , Trees/microbiology , Tropical Climate
18.
Oecologia ; 180(4): 1037-47, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26254258

ABSTRACT

In Neotropical forests, lianas are increasing in abundance relative to trees. This increased species richness may reflect a positive response to global change factors including increased temperature, atmospheric CO2, habitat fragmentation, and drought severity; however, questions remain as to the specific mechanisms facilitating the response. Previous work suggests that lianas may gain an ecological advantage over trees through leaf functional traits that offer a quick return on investment of resources, although it is unknown whether this pattern extends to root traits and relationships with fungal or bacterial symbionts belowground. We sampled confamilial pairs of liana and tree species and quantified morphological and chemical traits of leaves and fine roots, as well as root symbiont abundance, to determine whether functional traits associated with resource acquisition differed between the two. Compared to trees, lianas possessed higher specific leaf area, specific root length, root branching intensity, and root nitrogen (N) and phosphorus (P) concentrations, and lower leaf and root tissue density, leaf and root carbon (C), root diameter, root C:P and N:P, and mycorrhizal colonization. Our study provides new evidence that liana leaf and root traits are characterized by a rapid resource acquisition strategy relative to trees. These liana functional traits may facilitate their response to global change, raising questions about how increased liana dominance might affect ecosystem processes of Neotropical forests.


Subject(s)
Forests , Nitrogen/metabolism , Phenotype , Plant Leaves/physiology , Plant Roots/physiology , Plants/metabolism , Tropical Climate , Carbon/metabolism , Environment , Mycorrhizae , Phosphorus/metabolism , Plant Leaves/anatomy & histology , Plant Leaves/metabolism , Plant Roots/anatomy & histology , Plant Roots/metabolism , Plants/anatomy & histology , Trees/physiology
19.
Ecology ; 96(8): 2137-46, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26405739

ABSTRACT

Questions remain as to which soil nutrients limit primary production in tropical forests. Phosphorus (P) has long been considered the primary limiting element in lowland forests, but recent evidence demonstrates substantial heterogeneity in response to nutrient addition, highlighting a need to understand and diagnose nutrient limitation across diverse forests. Fine-root characteristics including their abundance, functional traits, and mycorrhizal symbionts can be highly responsive to changes in soil nutrients and may help to diagnose nutrient limitation. Here, we document the response of fine roots to long-term nitrogen (N), P, and potassium (K) fertilization in a lowland forest in Panama. Because this experiment has demonstrated that N and K together limit tree growth and P limits fine litter production, we hypothesized that fine roots would also respond to nutrient addition. Specifically we hypothesized that N, P, and K addition would reduce the biomass, diameter, tissue density, and mycorrhizal colonization of fine roots, and increase nutrient concentration in root tissue. Most morphological root traits responded to the single addition of K and the paired addition of N and P, with the greatest response to all three nutrients combined. The addition of N, P, and K together reduced fine-root biomass, length, and tissue density, and increased specific root length, whereas root diameter remained unchanged. Nitrogen addition did not alter root N concentration, but P and K addition increased root P and K concentration, respectively. Mycorrhizal colonization of fine roots declined with N, increased with P, and was unresponsive to K addition. Although plant species composition remains unchanged after 14 years of fertilization, fine-root characteristics responded to N, P, and K addition, providing some of the strongest stand-level responses in this experiment. Multiple soil nutrients regulate fine-root abundance, morphological and chemical traits, and their association with mycorrhizal fungi in a species-rich lowland tropical forest.


Subject(s)
Fertilizers , Forests , Plant Roots/drug effects , Plant Roots/growth & development , Tropical Climate , Mycorrhizae , Nitrogen/administration & dosage , Nitrogen/pharmacology , Panama , Phosphorus/administration & dosage , Phosphorus/pharmacology , Plant Development/drug effects , Potassium/administration & dosage , Potassium/pharmacology , Soil Microbiology
20.
Oecologia ; 174(4): 1117-26, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24337710

ABSTRACT

General circulation models project more intense and frequent droughts over the next century, but many questions remain about how terrestrial ecosystems will respond. Of particular importance, is to understand how drought will alter the species composition of regenerating temperate forests wherein symbiotic dinitrogen (N2)-fixing plants play a critical role. In experimental mesocosms we manipulated soil moisture to study the effect of drought on the physiology, growth and competitive interactions of four co-occurring North American tree species, one of which (Robinia pseudoacacia) is a symbiotic N2-fixer. We hypothesized that drought would reduce growth by decreasing stomatal conductance, hydraulic conductance and increasing the water use efficiency of species with larger diameter xylem vessel elements (Quercus rubra, R. pseudoacacia) relative to those with smaller elements (Acer rubrum and Liriodendron tulipifera). We further hypothesized that N2 fixation by R. pseudoacacia would decline with drought, reducing its competitive ability. Under drought, growth declined across all species; but, growth and physiological responses did not correspond to species' hydraulic architecture. Drought triggered an 80% increase in nodule biomass and N accrual for R. pseudoacacia, improving its growth relative to other species. These results suggest that drought intensified soil N deficiency and that R. pseudoacacia's ability to fix N2 facilitated competition with non-fixing species when both water and N were limiting. Under scenarios of moderate drought, N2 fixation may alleviate the N constraints resulting from low soil moisture and improve competitive ability of N2-fixing species, and as a result, supply more new N to the ecosystem.


Subject(s)
Droughts , Ecosystem , Nitrogen Fixation , Robinia/physiology , Acer/growth & development , Biomass , Liriodendron/growth & development , Quercus/growth & development , Soil/chemistry , Trees/physiology , Water , Xylem
SELECTION OF CITATIONS
SEARCH DETAIL
...