Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Neuromodulation ; 25(4): 569-577, 2022 06.
Article in English | MEDLINE | ID: mdl-35667772

ABSTRACT

OBJECTIVES: The efficacy of repetitive transcranial magnetic stimulation (rTMS) in clinically relevant neuroplasticity research depends on the degree to which stimulation induces robust, reliable effects. The high degree of interindividual and intraindividual variability observed in response to rTMS protocols, such as continuous theta burst stimulation (cTBS), therefore represents an obstacle to its utilization as treatment for neurological disorders. Brain-derived neurotrophic factor (BDNF) is a protein involved in human synaptic and neural plasticity, and a common polymorphism in the BDNF gene (Val66Met) may influence the capacity for neuroplastic changes that underlie the effects of cTBS and other rTMS protocols. While evidence from healthy individuals suggests that Val66Met polymorphism carriers may show diminished or facilitative effects of rTMS compared to their homozygous Val66Val counterparts, this has yet to be demonstrated in the patient populations where neuromodulatory therapies are most relevant. MATERIALS AND METHODS: We examined the effects of BDNF Val66Met polymorphism on cTBS aftereffects in stroke patients. We compared approximately 30 log-transformed motor-evoked potentials (LnMEPs) obtained per time point: at baseline and at 0, 10, 20, and 30 min after cTBS-600, from 18 patients with chronic stroke using single TMS pulses. We used linear mixed-effects regression with trial-level data nested by subject for higher statistical power. RESULTS: We found a significant interaction between BDNF genotype and pre-/post-cTBS LnMEPs. Val66Val carriers showed decrease in cortical excitability, whereas Val66Met carriers exhibited a modest increase in cortical excitability for 20 min poststimulation, followed by inhibition 30 min after cTBS-600. CONCLUSIONS: Our findings strongly suggest that BDNF genotype differentially affects neuroplastic responses to TMS in individuals with chronic stroke. This provides novel insight into potential sources of variability in cTBS response in patients, which has important implications for optimizing the utility of this neuromodulation approach. Incorporating BDNF polymorphism genetic screening to stratify patients prior to use of cTBS as a neuromodulatory technique in therapy or research may optimize response rates.


Subject(s)
Motor Cortex , Stroke , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Evoked Potentials, Motor/physiology , Humans , Motor Cortex/physiology , Polymorphism, Genetic/genetics , Stroke/genetics , Stroke/therapy , Transcranial Magnetic Stimulation/methods
2.
Neurorehabil Neural Repair ; 36(6): 371-380, 2022 06.
Article in English | MEDLINE | ID: mdl-35428413

ABSTRACT

BACKGROUND: There is high variability in post-stroke aphasia severity and predicting recovery remains imprecise. Standard prognostics do not include neurophysiological indicators or genetic biomarkers of neuroplasticity, which may be critical sources of variability. OBJECTIVE: To evaluate whether a common polymorphism (Val66Met) in the gene for brain-derived neurotrophic factor (BDNF) contributes to variability in post-stroke aphasia, and to assess whether BDNF polymorphism interacts with neurophysiological indicators of neuroplasticity (cortical excitability and stimulation-induced neuroplasticity) to improve estimates of aphasia severity. METHODS: Saliva samples and motor-evoked potentials (MEPs) were collected from participants with chronic aphasia subsequent to left-hemisphere stroke. MEPs were collected prior to continuous theta burst stimulation (cTBS; index for cortical excitability) and 10 minutes following cTBS (index for stimulation-induced neuroplasticity) to the right primary motor cortex. Analyses assessed the extent to which BDNF polymorphism interacted with cortical excitability and stimulation-induced neuroplasticity to predict aphasia severity beyond established predictors. RESULTS: Val66Val carriers showed less aphasia severity than Val66Met carriers, after controlling for lesion volume and time post-stroke. Furthermore, Val66Val carriers showed expected effects of age on aphasia severity, and positive associations between severity and both cortical excitability and stimulation-induced neuroplasticity. In contrast, Val66Met carriers showed weaker effects of age and negative associations between cortical excitability, stimulation-induced neuroplasticity and aphasia severity. CONCLUSIONS: Neurophysiological indicators and genetic biomarkers of neuroplasticity improved aphasia severity predictions. Furthermore, BDNF polymorphism interacted with cortical excitability and stimulation-induced neuroplasticity to improve predictions. These findings provide novel insights into mechanisms of variability in stroke recovery and may improve aphasia prognostics.


Subject(s)
Aphasia , Stroke , Aphasia/genetics , Biomarkers , Brain-Derived Neurotrophic Factor/genetics , Humans , Language , Neuronal Plasticity/genetics , Stroke/complications , Stroke/genetics , Transcranial Magnetic Stimulation
3.
Front Hum Neurosci ; 15: 585533, 2021.
Article in English | MEDLINE | ID: mdl-34220466

ABSTRACT

Objective: To evaluate whether a common polymorphism (Val66Met) in the gene for brain-derived neurotrophic factor (BDNF)-a gene thought to influence plasticity-contributes to inter-individual variability in responses to continuous theta-burst stimulation (cTBS), and explore whether variability in stimulation-induced plasticity among Val66Met carriers relates to differences in stimulation intensity (SI) used to probe plasticity. Methods: Motor evoked potentials (MEPs) were collected from 33 healthy individuals (11 Val66Met) prior to cTBS (baseline) and in 10 min intervals immediately following cTBS for a total of 30 min post-cTBS (0 min post-cTBS, 10 min post-cTBS, 20 min post cTBS, and 30 min post-cTBS) of the left primary motor cortex. Analyses assessed changes in cortical excitability as a function of BDNF (Val66Val vs. Val66Met) and SI. Results: For both BDNF groups, MEP-suppression from baseline to post-cTBS time points decreased as a function of increasing SI. However, the effect of SI on MEPs was more pronounced for Val66Met vs. Val66Val carriers, whereby individuals probed with higher vs. lower SIs resulted in paradoxical cTBS aftereffects (MEP-facilitation), which persisted at least 30 min post-cTBS administration. Conclusions: cTBS aftereffects among BDNF Met allele carriers are more variable depending on the SI used to probe cortical excitability when compared to homozygous Val allele carriers, which could, to some extent, account for the inconsistency of previously reported cTBS effects. Significance: These data provide insight into the sources of cTBS response variability, which can inform how best to stratify and optimize its use in investigational and clinical contexts.

4.
Brain Lang ; 192: 25-34, 2019 05.
Article in English | MEDLINE | ID: mdl-30870740

ABSTRACT

BACKGROUND: Repetitive transcranial magnetic stimulation (rTMS) has been used experimentally to facilitate naming abilities in individuals with chronic post-stroke aphasia. However, little is known about how rTMS confers clinical improvement, hampering its therapeutic value. The present study investigated the characteristics of naming failure that improve following administration of continuous theta burst stimulation (cTBS)-an inhibitory form of rTMS-to the right pars triangularis (rPTr) in persons with chronic aphasia. METHODS: Eleven participants with chronic aphasia following left hemisphere stroke named pictures prior to and immediately following cTBS of the rPTr and a control site (vertex) in separate sessions. Prior to stimulation, we obtained two baseline measurements of picture naming ability to determine the extent and type (i.e., phonological vs. semantic) of naming impairment. Items presented for naming during stimulation were those that were named incorrectly in one or both of the baseline sessions (i.e., inconsistent vs. wrong items, respectively). Analyses assessed whether cTBS effects differed depending on the severity and/or type of naming impairment. RESULTS: Relative to vertex, cTBS of the rPTr improved naming of inconsistent, but not wrong, items for individuals with more severe baseline naming impairment. Critically, baseline phonological but not semantic naming impairment severity marginally correlated with improved accuracy overall, and significantly correlated with decreased phonological errors following rPTr stimulation. CONCLUSION: CTBS of the rPTr enhances naming by facilitating phonological access during word retrieval, indicating that individuals whose naming impairment is localized to this stage of processing may be most likely to benefit from this rTMS approach.


Subject(s)
Aphasia/rehabilitation , Broca Area/physiology , Semantics , Stroke Rehabilitation/methods , Stroke/complications , Theta Rhythm , Adult , Aphasia/etiology , Broca Area/physiopathology , Female , Humans , Male , Middle Aged , Transcranial Magnetic Stimulation/methods
5.
Dose Response ; 15(1): 1559325816685467, 2017.
Article in English | MEDLINE | ID: mdl-28210202

ABSTRACT

The US Air Force Office of Scientific Research convened a meeting of researchers in the fields of neuroscience, psychology, engineering, and medicine to discuss most pressing issues facing ongoing research in the field of transcranial direct current stimulation (tDCS) and related techniques. In this study, we present opinions prepared by participants of the meeting, focusing on the most promising areas of research, immediate and future goals for the field, and the potential for hormesis theory to inform tDCS research. Scientific, medical, and ethical considerations support the ongoing testing of tDCS in healthy and clinical populations, provided best protocols are used to maximize safety. Notwithstanding the need for ongoing research, promising applications include enhancing vigilance/attention in healthy volunteers, which can accelerate training and support learning. Commonly, tDCS is used as an adjunct to training/rehabilitation tasks with the goal of leftward shift in the learning/treatment effect curves. Although trials are encouraging, elucidating the basic mechanisms of tDCS will accelerate validation and adoption. To this end, biomarkers (eg, clinical neuroimaging and findings from animal models) can support hypotheses linking neurobiological mechanisms and behavioral effects. Dosage can be optimized using computational models of current flow and understanding dose-response. Both biomarkers and dosimetry should guide individualized interventions with the goal of reducing variability. Insights from other applied energy domains, including ionizing radiation, transcranial magnetic stimulation, and low-level laser (light) therapy, can be prudently leveraged.

6.
Camb Q Healthc Ethics ; 26(2): 292-312, 2017 Apr.
Article in English | MEDLINE | ID: mdl-27852344

ABSTRACT

Neuroscience and neurotechnology are increasingly being employed to assess and alter cognition, emotions, and behaviors, and the knowledge and implications of neuroscience have the potential to radically affect, if not redefine, notions of what constitutes humanity, the human condition, and the "self." Such capability renders neuroscience a compelling theme that is becoming ubiquitous in literary and cinematic fiction. Such neuro-SciFi (or "NeuroS/F") may be seen as eidolá: a created likeness that can either accurately-or superficially, in a limited way-represent that which it depicts. Such eidolá assume discursive properties implicitly, as emotionally salient references for responding to cultural events and technological objects reminiscent of fictional portrayal; and explicitly, through characters and plots that consider the influence of neurotechnological advances from various perspectives. We argue that in this way, neuroS/F eidolá serve as allegorical discourse on sociopolitical or cultural phenomena, have power to restructure technological constructs, and thereby alter the trajectory of technological development. This fosters neuroethical responsibility for monitoring neuroS/F eidolá and the sociocultural context from which-and into which-the ideas of eidolá are projected. We propose three approaches to this: evaluating reciprocal effects of imaginary depictions on real-world neurotechnological development; tracking changing sociocultural expectations of neuroscience and its uses; and analyzing the actual process of social interpretation of neuroscience to reveal shifts in heuristics, ideas, and attitudes. Neuroethicists are further obliged to engage with other discourse actors about neuroS/F interpretations to ensure that meanings assigned to neuroscientific advances are well communicated and more fully appreciated.


Subject(s)
Bioethical Issues , Motion Pictures/ethics , Neurosciences/ethics , Biomedical Technology/ethics , Cognition , Emotions , Humans , Knowledge , Thinking
7.
Restor Neurol Neurosci ; 34(4): 537-58, 2016 05 02.
Article in English | MEDLINE | ID: mdl-27163249

ABSTRACT

PURPOSE: Aphasia-acquired loss of the ability to understand or express language-is a common and debilitating neurological consequence of stroke. Evidence suggests that transcranial magnetic (TMS) or direct current stimulation (tDCS) can significantly improve language outcomes in patients with aphasia (PWA). However, the relative efficacy between TMS and tDCS has not yet been explored. Mechanistic and methodological differences, patient inclusion/exclusion criteria and experimental designs may influence observed treatment benefits. METHODS: We conducted a systematic review and meta-analyses of TMS and tDCS treatment studies in PWA. Standard mean difference (SMD) for changes in picture naming accuracy was estimated; pooled SMDs were compared using a random-effects model. RESULTS: Eight TMS (N = 143) and 8 tDCS studies (N = 140) met our inclusion criteria. Pooled SMDs of 0.448 (p < 0.001) in favor of TMS, and 0.395 (p < 0.001) in favor of tDCS were found. Between-subject designs were more common in subacute and within/crossover designs in chronic patients. TMS SMDs were significant in both chronic (SMD = 0.348) and subacute (SMD = 0.667) populations while those for tDCS were significant in chronic (SMD = 0.320) but not in subacute (SMD = 0.283) PWA. CONCLUSIONS: The magnitude of treatment effects appears to be consistent between TMS and tDCS in PWA. Larger-scale clinical trials should further substantiate our findings.


Subject(s)
Aphasia/rehabilitation , Neurological Rehabilitation/methods , Outcome Assessment, Health Care/statistics & numerical data , Stroke/complications , Transcranial Direct Current Stimulation/methods , Transcranial Magnetic Stimulation/methods , Aphasia/etiology , Humans
9.
Behav Brain Res ; 278: 115-28, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25281279

ABSTRACT

EphA receptors and ephrin-A ligands play important roles in neural development and synaptic plasticity in brain regions where expression persists into adulthood. Recently, EPHA3 and EPHA7 gene mutations were linked with Autism Spectrum Disorders (ASDs) and developmental neurological delays, respectively. Furthermore, deletions of ephrin-A2 or ephrin-A3, which exhibit high binding affinity for EphA3 and EphA7 receptors, are associated with subtle deficits in learning and memory behavior and abnormalities in dendritic spine morphology in the cortex and hippocampus in mice. To better characterize a potential role for these ligands in ASDs, we performed a comprehensive behavioral characterization of anxiety-like, sensorimotor, learning, and social behaviors in ephrin-A2/-A3 double knockout (DKO) mice. The predominant phenotype in DKO mice was repetitive and self-injurious grooming behaviors such as have been associated with corticostriatal circuit abnormalities in other rodent models of neuropsychiatric disorders. Consistent with ASDs specifically, DKO mice exhibited decreased preference for social interaction in the social approach assay, decreased locomotor activity in the open field, increased prepulse inhibition of acoustic startle, and a shift towards self-directed activity (e.g., grooming) in novel environments, such as marble burying. Although there were no gross deficits in cognitive assays, subtle differences in performance on fear conditioning and in the Morris water maze resembled traits observed in other rodent models of ASD. We therefore conclude that ephrin-A2/-A3 DKO mice have utility as a novel ASD model with an emphasis on sensory abnormalities and restricted, repetitive behavioral symptoms.


Subject(s)
Autism Spectrum Disorder/complications , Autism Spectrum Disorder/genetics , Ephrin-A2/deficiency , Ephrin-A3/deficiency , Gait Disorders, Neurologic/etiology , Grooming/physiology , Stereotyped Behavior/physiology , Animals , Conditioning, Psychological/physiology , Disease Models, Animal , Ephrin-A2/genetics , Ephrin-A3/genetics , Exploratory Behavior/physiology , Fear/physiology , Interpersonal Relations , Maze Learning/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/genetics , Prepulse Inhibition/genetics , Reflex, Startle/genetics
10.
BMC Med ; 10: 37, 2012 Apr 17.
Article in English | MEDLINE | ID: mdl-22510307

ABSTRACT

Brüne's proposal that erstwhile 'vulnerability' genes need to be reconsidered as 'plasticity' genes, given the potential for certain environments to yield increased positive function in the same domain as potential dysfunction, has implications for psychiatric nosology as well as a more dynamic understanding of the relationship between genes and culture. In addition to validating neuropsychiatric spectrum disorder nosologies by calling for similar methodological shifts in gene-environment-interaction studies, Brüne's position elevates the importance of environmental contexts - inclusive of socio-cultural variables - as mechanisms that contribute to clinical presentation. We assert that when models of susceptibility to plasticity and neuropsychiatric spectrum disorders are concomitantly considered, a new line of inquiry emerges into the co-evolution and co-determination of socio-cultural contexts and endophenotypes. This presents potentially unique opportunities, benefits, challenges, and responsibilities for research and practice in psychiatry. Please see related manuscript: http://www.biomedcentral.com/1741-7015/10/38.


Subject(s)
Cultural Evolution , Evolution, Molecular , Genetic Predisposition to Disease , Mental Disorders/genetics , Mental Disorders/physiopathology , Neuronal Plasticity/physiology , Humans
11.
J Altern Complement Med ; 16(1): 27-35, 2010 Jan.
Article in English | MEDLINE | ID: mdl-20064021

ABSTRACT

BACKGROUND: Outcome assessment can support the therapeutic process by providing a way to track symptoms and functionality over time, providing insights to clinicians and patients, as well as offering a common language to discuss patient behavior/functioning. OBJECTIVES: In this article, we examine the patient-based outcome assessment (PBOA) instruments that have been used to determine outcomes in acupuncture clinical research and highlight measures that are feasible, practical, economical, reliable, valid, and responsive to clinical change. The aims of this review were to assess and identify the commonly available PBOA measures, describe a framework for identifying appropriate sets of measures, and address the challenges associated with these measures and acupuncture. Instruments were evaluated in terms of feasibility, practicality, economy, reliability, validity, and responsiveness to clinical change. METHODS: This study was a systematic review. A total of 582 abstracts were reviewed using PubMed (from inception through April 2009). RESULTS: A total of 582 citations were identified. After screening of title/abstract, 212 articles were excluded. From the remaining 370 citations, 258 manuscripts identified explicit PBOA; 112 abstracts did not include any PBOA. The five most common PBOA instruments identified were the Visual Analog Scale, Symptom Diary, Numerical Pain Rating Scales, SF-36, and depression scales such as the Beck Depression Inventory. CONCLUSIONS: The way a questionnaire or scale is administered can have an effect on the outcome. Also, developing and validating outcome measures can be costly and difficult. Therefore, reviewing the literature on existing measures before creating or modifying PBOA instruments can significantly reduce the burden of developing a new measure.


Subject(s)
Acupuncture Therapy , Diagnostic Techniques and Procedures , Outcome Assessment, Health Care/methods , Research , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...