Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Res Ther ; 15(1): 16, 2023 01 14.
Article in English | MEDLINE | ID: mdl-36641439

ABSTRACT

BACKGROUND: Hyperphosphorylation and intraneuronal aggregation of the microtubule-associated protein tau is a major pathological hallmark of Alzheimer's disease (AD) brain. Of special interest is the effect of cerebral amyloid beta deposition, the second main hallmark of AD, on human tau pathology. Therefore, studying the influence of cerebral amyloidosis on human tau in a novel human tau knock-in (htau-KI) mouse model could help to reveal new details on their interplay. METHODS: We studied the effects of a novel human htau-KI under fast-progressing amyloidosis in 5xFAD mice in terms of correlation of gene expression data with human brain regions, development of Alzheimer's-like pathology, synaptic transmission, and behavior. RESULTS: The main findings are an interaction of human beta-amyloid and human tau in crossbred 5xFADxhtau-KI observed at transcriptional level and corroborated by electrophysiology and histopathology. The comparison of gene expression data of the 5xFADxhtau-KI mouse model to 5xFAD, control mice and to human AD patients revealed conspicuous changes in pathways related to mitochondria biology, extracellular matrix, and immune function. These changes were accompanied by plaque-associated MC1-positive pathological tau that required the htau-KI background. LTP deficits were noted in 5xFAD and htau-KI mice in contrast to signs of rescue in 5xFADxhtau-KI mice. Increased frequencies of miniature EPSCs and miniature IPSCs indicated an upregulated presynaptic function in 5xFADxhtau-KI. CONCLUSION: In summary, the multiple interactions observed between knocked-in human tau and the 5xFAD-driven progressing amyloidosis have important implications for future model development in AD.


Subject(s)
Alzheimer Disease , Amyloidosis , Mice , Humans , Animals , Amyloid beta-Peptides/metabolism , Mice, Transgenic , Alzheimer Disease/pathology , tau Proteins/genetics , tau Proteins/metabolism , Brain/metabolism , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism
2.
Sci Rep ; 10(1): 15090, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32934311

ABSTRACT

Therapeutic mRNA delivery has been described for several treatment options, such as vaccination and cancer immunotherapy. However, mRNA delivery has to be accompanied by the development and testing of suitable carrier materials due to the instability of mRNAs in human body fluids. In the present study, we investigated the ability of recently developed Viromers to deliver mRNAs in a classical inflammatory setting. We tested mRNAs coding for active components of preclinical (7ND) and approved (sTNF-RII) biologics, in vitro and in vivo. 7ND is an established blocker of the CCR2 axis, whereas sTNF-RII is the active component of the approved drug Etanercept. Viromer/mRNA complexes were transfected into murine macrophages in vitro. Protein expression was analysed using Luciferase reporter expression and mainly identified in spleen, blood and bone marrow in vivo. 7ND-mRNA delivery led to efficient blockage of monocytes infiltration in thioglycolate-induced peritonitis in mice, underlining the ability of Viromers to deliver a therapeutic mRNA cargo without overt toxicity. Therefore, we propose Viromer-based mRNA delivery as a suitable option for the treatment of inflammatory disorders beyond infusion of biological molecules.


Subject(s)
Drug Carriers/chemistry , Inflammation/metabolism , Polymers/chemistry , RNA, Messenger/chemistry , RNA, Messenger/metabolism , Animals , Cell Line , Female , Macrophages/metabolism , Male , Mice , Mice, Hairless , Mice, Inbred DBA , Monocytes/metabolism , Polyethyleneimine/chemistry , RAW 264.7 Cells , Receptors, CCR2/metabolism , Receptors, Tumor Necrosis Factor, Type II/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...