Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 14(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36365199

ABSTRACT

The insect repellent ethyl butylacetylaminopropionate (IR3535) was used as a functional additive for poly (l-lactic acid) (PLLA) to modify its structure and mechanical properties and achieve insect repellency. PLLA/IR3535 mixtures at various compositions were prepared via melt extrusion. In the analyzed composition range of 0 to 23 m% IR3535, PLLA and IR3535 were miscible at the length scale represented by the glass transition temperature. Addition of IR3535 resulted in a significant decrease in the glass transition temperature of PLLA, as well as in the elastic modulus, indicating its efficiency as a plasticizer. All mixtures were amorphous after extrusion, though PLLA/IR3535 extrudates with an IR3535 content between 18 and 23 m% crystallized during long-term storage at ambient temperature, due to their low glass transition temperature. Quantification of the release of IR3535 into the environment by thermogravimetric analysis at different temperatures between 50 and 100 °C allowed the estimation of the evaporation rate at lower temperatures, suggesting an extremely low release rate with a time constant of the order of magnitude of 1-2 years at body temperature.

2.
Biomaterials ; 24(6): 967-74, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12504518

ABSTRACT

The surface of tricalcium phosphate (TCP) filler particles was activated by treatment with dilute aqueous phosphoric acid. ATR-IR spectra indicated the formation of calcium hydrogen phosphate dihydrate at the surface. Oligo(lactone)s were formed by the subsequent reaction of the activated TCP with L-lactide and epsilon -caprolactone, respectively, at 150 degrees C without any additional catalysts. After extraction of the oligo(lactide), the residue of modified TCP-included calcium lactate whereas the water of crystallization of the dihydrate disappeared as shown by ATR-IR spectroscopy. Owing to the insolubility of TCP in common solvents, the analogous reaction between water-soluble disodium hydrogen phosphate dihydrate and L-lactide was used to study the kind of chemical bonds by high-resolution NMR spectroscopy. The 1H and 13C NMR spectra of the reaction product also pointed out the presence of calcium lactate. Additionally, signals were found indicating a covalent attachment of lactic acid units onto the phosphorus. For the preparation of composites, poly(L,DL-lactide) was mixed with TCP and modified TCP, respectively, in a ratio of 75/25 (w/w) and directly injection moulded into tensile test specimens at a barrel temperature of 180 degrees C. Although mechanical properties were not improved, scanning electron microscopy (SEM) indicated a better interfacial phase interaction in the composite with the modified TCP. Chemical bonds between filler and polymer matrix are assumed to be formed by transesterification reactions.


Subject(s)
Biocompatible Materials/chemistry , Calcium Phosphates/chemistry , Biodegradation, Environmental , Calcium Compounds/analysis , Crystallization , Lactates/analysis , Magnetic Resonance Spectroscopy , Microscopy, Electron, Scanning , Phosphoric Acids , Spectrophotometry, Infrared , Surface Properties , Tensile Strength , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...