Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 10(10)2020 Oct 01.
Article in English | MEDLINE | ID: mdl-33019688

ABSTRACT

Membrane processes have revolutionized many industries because they are more energy and environmentally friendly than other separation techniques. This initial selection of the membrane for any application is based on its Molecular Weight Cut-Off (MWCO). However, there is a lack of a quantitative, liable, and rapid method to determine the MWCO of the membrane. In this study, a methodology to determine the MWCO, based on the retention of fluorescent silica nanoparticles (NPs), is presented. Optimized experimental conditions (Transmembrane pressure, filtration duration, suspension concentration, etc.) have been performed on different membranes MWCO. Filtrations with suspension of fluorescent NPs of different diameters 70, 100, 200 and 300 nm have been examined. The NPs sizes were selected to cover a wide range in order to study NPs diameters larger, close to, and smaller than the membrane pore size. A particle tracking analysis with a nanosight allows us to calculate the retention curves at all times. The retention rate curves were shifted over the filtration process at different times due to the fouling. The mechanism of fouling of the retained NPs explains the determined value of the MWCO. The reliability of this methodology, which presents a rapid quantitative way to determine the MWCO, is in good agreement with the value given by the manufacturer. In addition, this methodology gives access to the retention curve and makes it possible to determine the MWCO as a function of the desired retention rate.

2.
Water Sci Technol ; 77(11-12): 2781-2793, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30065130

ABSTRACT

The objectives of this study were to develop an analytical method to distinguish feed water used to produce drinking water, with varying concentrations of suspended solids, in terms of abrasiveness and to define an index that can assess the abrasive potential of the feed water coming in contact with a polymeric membrane. For such process configurations, membrane abrasion has been identified as one of the most recurring and major concerns in operation because the polymeric materials used in treatment plants are relatively sensitive to abrasion. Five different types of apparatus were benchmarked and were evaluated on their ability to be adapted to particles commonly found in most drinking water treatment plants at low concentrations. After comparing 10 criteria, the MCR302 with a tribological cell of Anton Paar was identified as the most relevant device. For the selected tool (MCR302), a statistical approach was used to provide a safe and robust ranking of the abrasive potential of the different types of water. An analysis of variance allowed the origin of the result variability to be explained. The newly developed methodology enables quantification of the abrasive potential of natural waters used for membrane filtration with a relevance of ranking higher than 90%.


Subject(s)
Membranes, Artificial , Water Purification/instrumentation , Water Purification/methods , Analysis of Variance , Drinking Water , Equipment Failure
3.
Water Res ; 123: 311-320, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28675844

ABSTRACT

The recent use of the reverse osmosis (RO) process at the damaged Fukushima-Daiichi nuclear power plant generated a growing interest in the application of this process for decontamination purposes. This study focused on the development of a robust RO process for decontamination of two kinds of liquid effluents: a contaminated groundwater after a nuclear disaster and a contaminated seawater during a nuclear accident. The SW30 HR membrane was selected among other in this study due to higher retentions (96% for Cs and 98% for Sr) in a true groundwater. Significant fouling and scaling phenomenon, attributed to calcium and strontium precipitation, were evidenced in this work: this underscored the importance of the lab scale experiment in the process. Validation of the separation performances on trace radionuclides concentration was performed with similar retention around 96% between surrogates Cs (inactive) and 137Cs (radioactive). The scale up to a 2.6 m2 spiral wound membrane led to equivalent retentions (around 96% for Cs and 99% for Sr) but lower flux values: this underlined that the hydrodynamic parameters (flowrate/cross-flow velocity) should be optimized. This methodology was also applied on the reconstituted seawater effluent: retentions were slightly lower than for the groundwater and the same hydrodynamic effects were observed on the pilot scale. Then, ageing of the membrane through irradiation experiments were performed. Results showed that the membrane active layer composition influenced the membrane resistance towards γ irradiation: the SW30 HR membrane performances (retention and permeability) were better than the Osmonics SE at 1 MGy. Finally, to supplement the scale up approach, the irradiation of a spiral wound membrane revealed a limited effect on the permeability and retention. This indicated that irradiation conditions need to be controlled for a further development of the process.


Subject(s)
Osmosis , Water Purification , Filtration , Membranes, Artificial , Permeability
4.
Membranes (Basel) ; 1(2): 91-7, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-24957612

ABSTRACT

Several microscopic and scattering techniques at different observation scales (from atomic to macroscopic) were used to characterize both surface and bulk properties of four new flat-sheet polyethersulfone (PES) membranes (10, 30, 100 and 300 kDa) and new 100 kDa hollow fibers (PVDF). Scanning Electron Microscopy (SEM) with "in lens" detection was used to obtain information on the pore sizes of the skin layers at the atomic scale. White Light Interferometry (WLI) and Atomic Force Microscopy (AFM) using different scales (for WLI: windows: 900 × 900 µm2 and 360 × 360 µm2; number of points: 1024; for AFM: windows: 50 × 50 µm2 and 5 × 5 µm2; number of points: 512) showed that the membrane roughness increases markedly with the observation scale and that there is a continuity between the different scan sizes for the determination of the RMS roughness. High angular resolution ellipsometric measurements were used to obtain the signature of each cut-off and the origin of the scattering was identified as coming from the membrane bulk.

SELECTION OF CITATIONS
SEARCH DETAIL
...