Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 14(2): 024018, 2009.
Article in English | MEDLINE | ID: mdl-19405748

ABSTRACT

In vivo wound healing response post nonablative fractional laser treatment is evaluated. Seven healthy subjects receive treatments with a Fraxel re:store laser system on the forearm with pulse energies ranging from 10 to 70 mJ. The treatment sites are imaged at 1-h increments up to 40 h using confocal microscope z-stacks using 10-mum-depth spacing. At least five individual microscopic treatment zones are imaged per subject, time point, and treatment energy. Images are analyzed for tissue structure and morphology to classify each lesion as healed or not healed, depending on epidermal re-epithelialization at each time point and treatment energy. Probit analysis is used to statistically determine the ED(50) and ED(84) probabilities for a positive dose response (healed lesion) as a function of treatment energy. Confocal observations reveal epidermal keratinocyte migration patterns confirmed with histological analysis using hematoxylin and eosin (HE) and lactate dehydrogenase (LDH) staining at 10 mJ at 0, 7, 16, and 24-h post-treatment. Results indicate that more time is required to conclude re-epithelialization with larger lesion sizes (all less than 500 mum) corresponding to higher treatment energies. For the entire pulse energy range tested, epidermal re-epithelialization concludes between 10 to 22-h post-treatment for ED(50) and 13 to 28 h for ED(84).


Subject(s)
Dermoscopy/methods , Laser Therapy/methods , Microscopy, Confocal/methods , Skin Physiological Phenomena , Skin/cytology , Wound Healing/physiology , Humans , Statistics as Topic
2.
Anal Chem ; 79(10): 3940-4, 2007 May 15.
Article in English | MEDLINE | ID: mdl-17432827

ABSTRACT

Quantitative studies of cellular systems require experimental techniques that can expose single cells to well-controlled chemical stimuli with high spatiotemporal resolution. Here, we combine microfluidic techniques with the photochemical release of caged signaling molecules to generate tailored stimuli on the length scale of individual cells with subsecond switching times. We exemplify this flexible approach by initiating membrane translocation of fluorescent fusion proteins in chemotactic Dictyostelium discoideum cells.


Subject(s)
Cells/drug effects , Microfluidics/methods , Photolysis , Animals , Cell Membrane/metabolism , Dictyostelium/cytology , Fluorescence , Recombinant Fusion Proteins/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...