Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Biomed Circuits Syst Conf ; 2014: 216-219, 2014 Oct.
Article in English | MEDLINE | ID: mdl-27231724

ABSTRACT

Safety features embedded in a 256-channel retinal prosthesis integrated circuit are presented. The biology of the retina and the electrochemistry of the electrode-tissue interface demand careful planning and design of the safety features of an implantable retinal stimulation device. We describe the internal limits and communication safety features of our ASIC, but we focus on monitoring and protection circuits for the electrode-tissue interface. Two independent voltage monitoring circuits for each channel measure the electrode polarization voltage at two different times in the biphasic stimulation cycle. The monitors ensure that the charged electrode stays within the electrochemical water window potentials, and that the discharged electrode is within a small window near the counter electrode potential. A switch to connect each electrode to the counter electrode between pulses protects against a wide range of device failures. Additionally, we describe work on an active feedback system to ensure that the electrode voltage is at zero.

2.
Article in English | MEDLINE | ID: mdl-23365888

ABSTRACT

We report on the design and testing of a custom application-specific integrated circuit (ASIC) that has been developed as a key component of the Boston retinal prosthesis. This device has been designed for patients who are blind due to age-related macular degeneration or retinitis pigmentosa. Key safety and communication features of the low-power ASIC are described, as are the highly configurable neural stimulation current waveforms that are delivered to its greater than 256 output electrodes. The ASIC was created using an 0.18 micron Si fabrication process utilizing standard 1.8 volt CMOS transistors as well as 20 volt lightly doped drain FETs. The communication system receives frequency-shift keyed inputs at 6.78 MHz from an implanted secondary coil, and transmits data back to the control unit through a lower-bandwidth channel that employs load-shift keying. The design's safety is ensured by on-board electrode voltage monitoring, stimulus charge limits, error checking of data transmitted to the implant, and comprehensive self-test and performance monitoring features. Each stimulus cycle is initiated by a transmitted word with a full 32-bit error check code. Taken together, these features allow researchers to safely and wirelessly tailor retinal stimulation and vision recovery for each patient.


Subject(s)
Eye, Artificial , Prosthesis Design , Retina , Visual Prosthesis , Boston , Humans , Macular Degeneration/physiopathology , Macular Degeneration/therapy , Retinitis Pigmentosa/physiopathology , Retinitis Pigmentosa/therapy
3.
Biomed Signal Process Control ; 6(4): 356-363, 2011 Oct 01.
Article in English | MEDLINE | ID: mdl-21927618

ABSTRACT

A small, hermetic, wirelessy-controlled retinal prosthesis has been developed for pre-clinical studies in Yucatan minipigs. The device was attached conformally to the outside of the eye in the socket and received both power and data wirelessly from external sources. Based on the received image data, the prosthesis drove a subretinal thin-film polyimide array of sputtered iridium oxide stimulating electrodes. The implanted device included a hermetic titanium case containing a 15-channel stimulator and receiver chip and discrete circuit components. Feedthroughs in the hermetic case connected the chip to secondary power- and data-receiving coils, which coupled to corresponding external power and data coils driven by power amplifiers. Power was delivered by a 125 KHz carrier, and data were delivered by amplitude shift keying of a 15.5 MHz carrier at 100 Kbps. Stimulation pulse strength, duration and frequency were programmed wirelessly from an external computer system. The final assembly was tested in vitro in physiological saline and in vivo in two minipigs for up to five and a half months by measuring stimulus artifacts generated by the implant's current drivers.

4.
IEEE Trans Biomed Eng ; 58(11): 3197-205, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21859595

ABSTRACT

A miniaturized, hermetically encased, wirelessly operated retinal prosthesis has been developed for preclinical studies in the Yucatan minipig, and includes several design improvements over our previously reported device. The prosthesis attaches conformally to the outside of the eye and electrically drives a microfabricated thin-film polyimide array of sputtered iridium oxide film electrodes. This array is implanted into the subretinal space using a customized ab externo surgical technique. The implanted device includes a hermetic titanium case containing a 15-channel stimulator chip and discrete circuit components. Feedthroughs in the case connect the stimulator chip to secondary power and data receiving coils on the eye and to the electrode array under the retina. Long-term in vitro pulse testing of the electrodes projected a lifetime consistent with typical devices in industry. The final assembly was tested in vitro to verify wireless operation of the system in physiological saline using a custom RF transmitter and primary coils. Stimulation pulse strength, duration, and frequency were programmed wirelessly from a Peripheral Component Interconnect eXtensions for Instrumentation (PXI) computer. Operation of the retinal implant has been verified in two pigs for up to five and a half months by detecting stimulus artifacts generated by the implanted device.


Subject(s)
Electric Stimulation/instrumentation , Electrodes, Implanted , Telemetry/instrumentation , Visual Prosthesis , Animals , Artifacts , Conjunctiva/physiology , Histocytochemistry , Iridium , Prosthesis Design , Retina/physiology , Swine , Swine, Miniature
5.
Article in English | MEDLINE | ID: mdl-22256071

ABSTRACT

A small, hermetic, wirelessly-controlled retinal prosthesis was developed for pre-clinical studies in Yucatan mini-pigs. The device was implanted on the outside of the eye in the orbit, and it received both power and data wirelessly from external sources. The prosthesis drove a sub-retinal thin-film array of sputtered iridium oxide stimulating electrodes. The implanted device included a hermetic titanium case containing the 16-channel stimulator chip and discrete circuit components. Feedthroughs in the hermetic case connected the chip to secondary power- and data-receiving coils, which coupled to corresponding external power and data coils driven by a power amplifier. Power was delivered by a 500 KHz carrier, and data were delivered by frequency shift keying. Stimulation pulse strength, duration and frequency were programmed wirelessly from an external computer system. Through an 'outbound' telemetry channel, electrode impedances were monitored by an on-board analog to digital converter that sampled the output voltage waveforms. The final assembly was tested in vitro in physiological saline and in vivo in two mini-pigs for up to three months by measuring stimulus artifacts generated by the implant's current drivers.


Subject(s)
Blindness/physiopathology , Blindness/therapy , Recovery of Function/physiology , Vision, Ocular/physiology , Visual Prosthesis , Animals , Boston , Electrodes, Implanted , Humans , Prosthesis Implantation , Swine , Swine, Miniature
6.
Article in English | MEDLINE | ID: mdl-22255004

ABSTRACT

A small, hermetic, wirelessly-controlled retinal prosthesis was developed for pre-clinical studies in Yucatan mini-pigs. The device was implanted on the outside of the eye in the orbit, and it received both power and data wirelessly from external sources. The prosthesis drove a sub-retinal thin-film array of sputtered iridium oxide stimulating electrodes. The implanted device included a hermetic titanium case containing the 16-channel stimulator chip and discrete circuit components. Feedthroughs in the hermetic case connected the chip to secondary power- and data-receiving coils, which coupled to corresponding external power and data coils driven by a power amplifier. Power was delivered by a 500 KHz carrier, and data were delivered by frequency shift keying. Stimulation pulse strength, duration and frequency were programmed wirelessly from an external computer system. Through an 'outbound' telemetry channel, electrode impedances were monitored by an on-board analog to digital converter that sampled the output voltage waveforms. The final assembly was tested in vitro in physiological saline and in vivo in two mini-pigs for up to three months by measuring stimulus artifacts generated by the implant's current drivers.


Subject(s)
Visual Prosthesis , Electrodes , Humans , Prosthesis Design
7.
Article in English | MEDLINE | ID: mdl-19964209

ABSTRACT

A miniaturized, hermetically-encased, wirelessly-operated retinal prosthesis has been developed for implantation and pre-clinical studies in Yucatan mini-pig animal models. The prosthesis conforms to the eye and drives a microfabricated polyimide stimulating electrode array with sputtered iridium oxide electrodes. This array is implanted in the subretinal space using a specially-designed ab externo surgical technique that affixes the bulk of the prosthesis to the surface of the sclera. The implanted device includes a hermetic titanium case containing a 15-channel stimulator chip and discrete power supply components. Feedthroughs from the case connect to secondary power- and data-receiving coils. In addition, long-term in vitro pulse testing was performed on the electrodes to ensure their stability for the long lifetime of the hermetic case. The final assembly was tested in vitro to verify wireless operation of the system in biological saline using a custom RF transmitter circuit and primary coils. Stimulation pulse strength, duration and frequency were programmed wirelessly using a custom graphical user interface. Operation of the retinal implant has been verified in vivo in one pig for more than three months by measuring stimulus artifacts on the eye surface using a contact lens electrode.


Subject(s)
Blindness/rehabilitation , Electric Stimulation Therapy/instrumentation , Electrodes, Implanted , Eye, Artificial , Image Interpretation, Computer-Assisted/instrumentation , Retinal Diseases/rehabilitation , Telemetry/methods , Equipment Failure Analysis , Humans , Prosthesis Design , Reproducibility of Results , Sensitivity and Specificity
8.
IEEE Trans Biomed Eng ; 56(10): 2502-11, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19403357

ABSTRACT

A wirelessly operated, minimally invasive retinal prosthesis was developed for preclinical chronic implantation studies in Yucatan minipig models. The implant conforms to the outer wall of the eye and drives a microfabricated polyimide stimulating electrode array with sputtered iridium oxide electrodes. This array is implanted in the subretinal space using a specially designed ab externo surgical technique that fixes the bulk of the prosthesis to the outer surface of the sclera. The implanted device is fabricated on a host polyimide flexible circuit. It consists of a 15-channel stimulator chip, secondary power and data receiving coils, and discrete power supply components. The completed device is encapsulated in poly(dimethylsiloxane) except for the reference/counter electrode and the thin electrode array. In vitro testing was performed to verify the performance of the system in biological saline using a custom RF transmitter circuit and primary coils. Stimulation patterns as well as pulse strength, duration, and frequency were programmed wirelessly using custom software and a graphical user interface. Wireless operation of the retinal implant has been verified both in vitro and in vivo in three pigs for more than seven months, the latter by measuring stimulus artifacts on the eye surface using contact lens electrodes.


Subject(s)
Electric Stimulation/instrumentation , Minimally Invasive Surgical Procedures/methods , Prosthesis Implantation/methods , Retina/physiology , Animals , Electrodes, Implanted , Equipment Design , Swine , Telecommunications
SELECTION OF CITATIONS
SEARCH DETAIL
...