Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 1049065, 2022.
Article in English | MEDLINE | ID: mdl-36605129

ABSTRACT

Background: RH5 is the leading vaccine candidate for the Plasmodium falciparum blood stage and has shown impact on parasite growth in the blood in a human clinical trial. RH5 binds to Ripr and CyRPA at the apical end of the invasive merozoite form, and this complex, designated RCR, is essential for entry into human erythrocytes. RH5 has advanced to human clinical trials, and the impact on parasite growth in the blood was encouraging but modest. This study assessed the potential of a protein-in-adjuvant blood stage malaria vaccine based on a combination of RH5, Ripr and CyRPA to provide improved neutralizing activity against P. falciparum in vitro. Methods: Mice were immunized with the individual RCR antigens to down select the best performing adjuvant formulation and rats were immunized with the individual RCR antigens to select the correct antigen dose. A second cohort of rats were immunized with single, double and triple antigen combinations to assess immunogenicity and parasite neutralizing activity in growth inhibition assays. Results: The DPX® platform was identified as the best performing formulation in potentiating P. falciparum inhibitory antibody responses to these antigens. The three antigens derived from RH5, Ripr and CyRPA proteins formulated with DPX induced highly inhibitory parasite neutralising antibodies. Notably, RH5 either as a single antigen or in combination with Ripr and/or CyRPA, induced inhibitory antibodies that outperformed CyRPA, Ripr. Conclusion: An RCR combination vaccine may not induce substantially improved protective immunity as compared with RH5 as a single immunogen in a clinical setting and leaves the development pathway open for other antigens to be combined with RH5 as a next generation malaria vaccine.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Humans , Mice , Rats , Animals , Antigens, Protozoan , Protozoan Proteins/metabolism , Malaria, Falciparum/parasitology , Plasmodium falciparum , Antibodies, Protozoan , Vaccines, Combined
2.
Infect Immun ; 80(12): 4177-85, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22966050

ABSTRACT

Merozoite surface protein 2 (MSP2) is an abundant glycosylphosphatidylinositol (GPI)-anchored protein of Plasmodium falciparum, which is a potential component of a malaria vaccine. As all forms of MSP2 can be categorized into two allelic families, a vaccine containing two representative forms of MSP2 may overcome the problem of diversity in this highly polymorphic protein. Monomeric recombinant MSP2 is an intrinsically unstructured protein, but its conformational properties on the merozoite surface are unknown. This question is addressed here by analyzing the 3D7 and FC27 forms of recombinant and parasite MSP2 using a panel of monoclonal antibodies raised against recombinant MSP2. The epitopes of all antibodies, mapped using both a peptide array and by nuclear magnetic resonance (NMR) spectroscopy on full-length recombinant MSP2, were shown to be linear. The antibodies revealed antigenic differences, which indicate that the conserved N- and C-terminal regions, but not the central variable region, are less accessible in the parasite antigen. This appears to be an intrinsic property of parasite MSP2 and is not dependent on interactions with other merozoite surface proteins as the loss of some conserved-region epitopes seen using the immunofluorescence assay (IFA) on parasite smears was also seen on Western blot analyses of parasite lysates. Further studies of the structural basis of these antigenic differences are required in order to optimize recombinant MSP2 constructs being evaluated as potential vaccine components.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, Protozoan/chemistry , Antigens, Protozoan/immunology , Epitope Mapping , Plasmodium falciparum/immunology , Protozoan Proteins/chemistry , Protozoan Proteins/immunology , Recombinant Proteins/immunology , Animals , Antigens, Protozoan/genetics , Female , Magnetic Resonance Spectroscopy , Mice , Mice, Inbred CBA , Plasmodium falciparum/genetics , Protein Conformation , Protozoan Proteins/genetics
3.
Article in English | MEDLINE | ID: mdl-18453721

ABSTRACT

The murine monoclonal antibody WO2 specifically binds the N-terminal region of the amyloid beta peptide (Abeta) associated with Alzheimer's disease. This region of Abeta has been shown to be the immunodominant B-cell epitope of the peptide and hence is considered to be a basis for the development of immunotherapeutic strategies against this prevalent cause of dementia. Structural studies have been undertaken in order to characterize the molecular basis for antibody recognition of this important epitope. Here, details of the crystallization and X-ray analysis of the Fab fragment of the unliganded WO2 antibody in two crystal forms and of the complexes that it forms with the truncated Abeta peptides Abeta(1-16) and Abeta(1-28) are presented. These crystals were all obtained using the hanging-drop vapour-diffusion method at 295 K. Crystals of WO2 Fab were grown in polyethylene glycol solutions containing ZnSO(4); they belonged to the orthorhombic space group P2(1)2(1)2(1) and diffracted to 1.6 A resolution. The complexes of WO2 Fab with either Abeta(1-16) or Abeta(1-28) were cocrystallized from polyethylene glycol solutions. These two complex crystals grew in the same space group, P2(1)2(1)2(1), and diffracted to 1.6 A resolution. A second crystal form of WO2 Fab was grown in the presence of the sparingly soluble Abeta(1-42) in PEG 550 MME. This second form belonged to space group P2(1) and diffracted to 1.9 A resolution.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides/chemistry , Antibodies, Monoclonal/chemistry , Crystallization , Immunoglobulin Fab Fragments/chemistry , Peptide Fragments/chemistry , X-Ray Diffraction , Amyloid beta-Peptides/immunology , Humans , Peptide Fragments/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...