Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant J ; 50(6): 1063-78, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17488239

ABSTRACT

As part of a larger project to sequence the Populus genome and generate genomic resources for this emerging model tree, we constructed a physical map of the Populus genome, representing one of the few such maps of an undomesticated, highly heterozygous plant species. The physical map, consisting of 2802 contigs, was constructed from fingerprinted bacterial artificial chromosome (BAC) clones. The map represents approximately 9.4-fold coverage of the Populus genome, which has been estimated from the genome sequence assembly to be 485 +/- 10 Mb in size. BAC ends were sequenced to assist long-range assembly of whole-genome shotgun sequence scaffolds and to anchor the physical map to the genome sequence. Simple sequence repeat-based markers were derived from the end sequences and used to initiate integration of the BAC and genetic maps. A total of 2411 physical map contigs, representing 97% of all clones assigned to contigs, were aligned to the sequence assembly (JGI Populus trichocarpa, version 1.0). These alignments represent a total coverage of 384 Mb (79%) of the entire poplar sequence assembly and 295 Mb (96%) of linkage group sequence assemblies. A striking result of the physical map contig alignments to the sequence assembly was the co-localization of multiple contigs across numerous regions of the 19 linkage groups. Targeted sequencing of BAC clones and genetic analysis in a small number of representative regions showed that these co-aligning contigs represent distinct haplotypes in the heterozygous individual sequenced, and revealed the nature of these haplotype sequence differences.


Subject(s)
Genome, Plant , Physical Chromosome Mapping , Populus/genetics , Chromosomes, Artificial, Bacterial , Haplotypes , Minisatellite Repeats , Polymorphism, Genetic , Sequence Alignment , Sequence Analysis, DNA
2.
Science ; 307(5713): 1321-4, 2005 Feb 25.
Article in English | MEDLINE | ID: mdl-15653466

ABSTRACT

Cryptococcus neoformans is a basidiomycetous yeast ubiquitous in the environment, a model for fungal pathogenesis, and an opportunistic human pathogen of global importance. We have sequenced its approximately 20-megabase genome, which contains approximately 6500 intron-rich gene structures and encodes a transcriptome abundant in alternatively spliced and antisense messages. The genome is rich in transposons, many of which cluster at candidate centromeric regions. The presence of these transposons may drive karyotype instability and phenotypic variation. C. neoformans encodes unique genes that may contribute to its unusual virulence properties, and comparison of two phenotypically distinct strains reveals variation in gene content in addition to sequence polymorphisms between the genomes.


Subject(s)
Cryptococcus neoformans/genetics , Genome, Fungal , Alternative Splicing , Cell Wall/metabolism , Chromosomes, Fungal/genetics , Computational Biology , Cryptococcus neoformans/pathogenicity , Cryptococcus neoformans/physiology , DNA Transposable Elements , Fungal Proteins/metabolism , Gene Library , Genes, Fungal , Humans , Introns , Molecular Sequence Data , Phenotype , Polymorphism, Genetic , Polymorphism, Single Nucleotide , Polysaccharides/metabolism , RNA, Antisense , Sequence Analysis, DNA , Transcription, Genetic , Virulence , Virulence Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...