Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 7(6): 796-804, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24473544

ABSTRACT

Real-time volumetric ultrasound imaging systems require transmit and receive circuitry to generate ultrasound beams and process received echo signals. The complexity of building such a system is high due to requirement of the front-end electronics needing to be very close to the transducer. A large number of elements also need to be interfaced to the back-end system and image processing of a large dataset could affect the imaging volume rate. In this work, we present a 3-D imaging system using capacitive micromachined ultrasonic transducer (CMUT) technology that addresses many of the challenges in building such a system. We demonstrate two approaches in integrating the transducer and the front-end electronics. The transducer is a 5-MHz CMUT array with an 8 mm × 8 mm aperture size. The aperture consists of 1024 elements (32 × 32) with an element pitch of 250 µm. An integrated circuit (IC) consists of a transmit beamformer and receive circuitry to improve the noise performance of the overall system. The assembly was interfaced with an FPGA and a back-end system (comprising of a data acquisition system and PC). The FPGA provided the digital I/O signals for the IC and the back-end system was used to process the received RF echo data (from the IC) and reconstruct the volume image using a phased array imaging approach. Imaging experiments were performed using wire and spring targets, a ventricle model and a human prostrate. Real-time volumetric images were captured at 5 volumes per second and are presented in this paper.


Subject(s)
Electronics, Medical/instrumentation , Microtechnology/instrumentation , Transducers , Ultrasonography/instrumentation , Humans , Imaging, Three-Dimensional , Male , Models, Biological , Prostate/diagnostic imaging
2.
Article in English | MEDLINE | ID: mdl-21097106

ABSTRACT

Capacitive micromachined ultrasonic transducer (CMUT) arrays are conveniently integrated with frontend integrated circuits either monolithically or in a hybrid multichip form. This integration helps with reducing the number of active data processing channels for 2D arrays. This approach also preserves the signal integrity for arrays with small elements. Therefore CMUT arrays integrated with electronic circuits are most suitable to implement miniaturized probes required for many intravascular, intracardiac, and endoscopic applications. This paper presents examples of miniaturized CMUT probes utilizing 1D, 2D, and ring arrays with integrated electronics.


Subject(s)
Electronics, Medical/instrumentation , Imaging, Three-Dimensional/instrumentation , Microtechnology/instrumentation , Transducers , Ultrasonics/instrumentation , Animals , Catheterization , Electrocardiography , Phantoms, Imaging , Sus scrofa
3.
Proc IEEE Ultrason Symp ; 2010: 375-377, 2010 Oct 11.
Article in English | MEDLINE | ID: mdl-22977296

ABSTRACT

In this work, we demonstrate 3-D photoacoustic imaging of optically absorbing targets embedded as deep as 5 cm inside a highly scattering background medium using a 2-D capacitive micromachined ultrasonic transducer (CMUT) array with a center frequency of 5.5 MHz. 3-D volumetric images and 2-D maximum intensity projection images are presented to show the objects imaged at different depths. Due to the close proximity of the CMUT to the integrated frontend circuits, the CMUT array imaging system has a low noise floor. This makes the CMUT a promising technology for deep tissue photoacoustic imaging.

4.
Proc IEEE Ultrason Symp ; 2010: 547-550, 2010 Oct.
Article in English | MEDLINE | ID: mdl-22685377

ABSTRACT

We introduce a versatile fabrication process for direct wafer-bonded CMUTs. The objective is a flexible fabrication platform for single element transducers, 1D and 2D arrays, and reconfigurable arrays. The main process features are: A low number of litho masks (five for a fully populated 2D array); a simple fabrication sequence on standard MEMS tools without complicated wafer handling (carrier wafers); an improved device reliability; a wide design space in terms of operation frequency and geometric parameters (cell diameter, gap height, effective insulation layer thickness); and a continuous front face of the transducer (CMUT plate) that is connected to ground (shielding for good SNR and human safety in medical applications). All of this is achieved by connecting the hot electrodes individually through a thick buried oxide layer, i.e. from the handle layer of an SOI substrate to silicon electrodes located in each CMUT cell built in the device layer. Vertical insulation trenches are used to isolate these silicon electrodes from the rest of the substrate. Thus, the high electric field is only present where required - in the evacuated gap region of the device and not in the insulation layer of the post region. Array elements (1D and 2D) are simply defined be etching insulation trenches into the handle wafer of the SOI substrate.

5.
Article in English | MEDLINE | ID: mdl-19942502

ABSTRACT

State-of-the-art 3-D medical ultrasound imaging requires transmitting and receiving ultrasound using a 2-D array of ultrasound transducers with hundreds or thousands of elements. A tight combination of the transducer array with integrated circuitry eliminates bulky cables connecting the elements of the transducer array to a separate system of electronics. Furthermore, preamplifiers located close to the array can lead to improved receive sensitivity. A combined IC and transducer array can lead to a portable, high-performance, and inexpensive 3-D ultrasound imaging system. This paper presents an IC flip-chip bonded to a 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array for 3-D ultrasound imaging. The IC includes a transmit beamformer that generates 25-V unipolar pulses with programmable focusing delays to 224 of the 256 transducer elements. One-shot circuits allow adjustment of the pulse widths for different ultrasound transducer center frequencies. For receiving reflected ultrasound signals, the IC uses the 32-elements along the array diagonals. The IC provides each receiving element with a low-noise 25-MHz-bandwidth transimpedance amplifier. Using a field-programmable gate array (FPGA) clocked at 100 MHz to operate the IC, the IC generated properly timed transmit pulses with 5-ns accuracy. With the IC flip-chip bonded to a CMUT array, we show that the IC can produce steered and focused ultrasound beams. We present 2-D and 3-D images of a wire phantom and 2-D orthogonal cross-sectional images (Bscans) of a latex heart phantom.


Subject(s)
Electronics, Medical/instrumentation , Imaging, Three-Dimensional/instrumentation , Transducers , Ultrasonography/instrumentation , Echocardiography , Equipment Design , Imaging, Three-Dimensional/methods , Phantoms, Imaging , Ultrasonography/methods
6.
Article in English | MEDLINE | ID: mdl-19942528

ABSTRACT

In this paper, we describe using a 2-D array of capacitive micromachined ultrasonic transducers (CMUTs) to perform 3-D photoacoustic and acoustic imaging. A tunable optical parametric oscillator laser system that generates nanosecond laser pulses was used to induce the photoacoustic signals. To demonstrate the feasibility of the system, 2 different phantoms were imaged. The first phantom consisted of alternating black and transparent fishing lines of 180 mum and 150 mum diameter, respectively. The second phantom comprised polyethylene tubes, embedded in chicken breast tissue, filled with liquids such as the dye indocyanine green, pig blood, and a mixture of the 2. The tubes were embedded at a depth of 0.8 cm inside the tissue and were at an overall distance of 1.8 cm from the CMUT array. Two-dimensional cross-sectional slices and 3-D volume rendered images of pulse-echo data as well as photoacoustic data are presented. The profile and beamwidths of the fishing line are analyzed and compared with a numerical simulation carried out using the Field II ultrasound simulation software. We investigated using a large aperture (64 x 64 element array) to perform photoacoustic and acoustic imaging by mechanically scanning a smaller CMUT array (16 x 16 elements). Two-dimensional transducer arrays overcome many of the limitations of a mechanically scanned system and enable volumetric imaging. Advantages of CMUT technology for photoacoustic imaging include the ease of integration with electronics, ability to fabricate large, fully populated 2-D arrays with arbitrary geometries, wide-bandwidth arrays and high-frequency arrays. A CMUT based photoacoustic system is proposed as a viable alternative to a piezoelectric transducer based photoacoustic systems.


Subject(s)
Elasticity Imaging Techniques/instrumentation , Imaging, Three-Dimensional/instrumentation , Transducers , Computer-Aided Design , Equipment Design , Equipment Failure Analysis , Feasibility Studies , Reproducibility of Results , Sensitivity and Specificity
7.
Article in English | MEDLINE | ID: mdl-19213646

ABSTRACT

In this study, we examine the use of capacitive micromachined ultrasonic transducers (CMUTs) with vacuum- sealed cavities for transmitting directional sound with parametric arrays. We used finite element modeling to design CMUTs with 40-microm- and 60-microm-thick membranes to have resonance frequencies of 46 kHz and 54 kHz, respectively. The wafer bonding approach used to fabricate the CMUTs provides good control over device properties and the capability to fabricate CMUTs with large diameter membranes and deep cavities. Each CMUT is 8 cm in diameter and consists of 284 circular membranes. Each membrane is 4 mm in diameter. Characterization of the fabricated CMUTs shows they have center frequencies of 46 kHz and 55 kHz and 3 dB bandwidths of 1.9 kHz and 5.3 kHz for the 40-microm- and 60-microm-thick membrane devices, respectively. With dc bias voltages of 380 V and 350 V and an ac excitation of 200 V peak-to-peak, the CMUTs generate average sound pressure levels, normalized to the device's surface, of 135 dB and 129 dB (re 20 microPa), respectively. When used to generate 5 kHz sound with a parametric array, we measured sound at 3 m with a 6 dB beamwidth of 8.7 degrees and a sound pressure level of 58 dB. To understand how detector nonlinearity (e.g., the nonlinearity of the microphone used to make the sound level measurements) affects the measured sound pressure level, we made measurements with and without an acoustic low-pass filter placed in front of the microphone; the measured sound levels agree with numerical simulations of the pressure field. The results presented in this paper demonstrate that large-area CMUTs, which produce high-intensity ultrasound, can be fabricated for transmitting directional sound with parametric arrays.

8.
Article in English | MEDLINE | ID: mdl-19213645

ABSTRACT

This paper reports on wafer-bonded, fully populated 2-D capacitive micromachined ultrasonic transducer (CMUT) arrays. To date, no successful through-wafer via fabrication technique has been demonstrated that is compatible with the wafer-bonding method of making CMUT arrays. As an alternative to through-wafer vias, trench isolation with a supporting frame is incorporated into the 2-D arrays to provide through-wafer electrical connections. The CMUT arrays are built on a silicon-on-insulator (SOI) wafer, and all electrical connections to the array elements are brought to the back side of the wafer through the highly conductive silicon substrate. Neighboring array elements are separated by trenches on both the device layer and the bulk silicon. A mesh frame structure, providing mechanical support, is embedded between silicon pillars, which electrically connect to individual elements. We successfully fabricated a 16 x 16-element 2-D CMUT array using wafer bonding with a yield of 100%. Across the array, the pulse-echo amplitude distribution is uniform (rho = 6.6% of the mean amplitude). In one design, we measured a center frequency of 7.6 MHz, a peak-to-peak output pressure of 2.9 MPa at the transducer surface, and a 3-dB fractional bandwidth of 95%. Volumetric ultrasound imaging was demonstrated by chip-to-chip bonding one of the fabricated 2-D arrays to a custom-designed integrated circuit (IC). This study shows that through-wafer trench-isolation with a supporting frame is a viable solution for providing electrical interconnects to CMUT elements and that 2-D arrays fabricated using waferbonding deliver good performance.


Subject(s)
Micro-Electrical-Mechanical Systems/instrumentation , Transducers , Ultrasonography/instrumentation , Air , Electric Impedance , Equipment Design , Fourier Analysis , Phantoms, Imaging , Silicon/chemistry , Soybean Oil/chemistry
9.
IEEE Trans Med Imaging ; 28(7): 1051-61, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19131299

ABSTRACT

In real-time ultrasonic 3-D imaging, in addition to difficulties in fabricating and interconnecting 2-D transducer arrays with hundreds of elements, there are also challenges in acquiring and processing data from a large number of ultrasound channels. The coarray (spatial convolution of the transmit and receive arrays) can be used to find efficient array designs that capture all of the spatial frequency content (a transmit-receive element combination corresponds to a spatial frequency) with a reduced number of active channels and firing events. Eliminating the redundancies in the transmit-receive element combinations and firing events reduces the overall system complexity and improves the frame rate. Here we explore four reduced redundancy 2-D array configurations for miniature 3-D ultrasonic imaging systems. Our approach is based on 1) coarray design with reduced redundancy using different subsets of linear arrays constituting the 2-D transducer array, and 2) 3-D scanning using fan-beams (narrow in one dimension and broad in the other dimension) generated by the transmit linear arrays. We form the overall array response through coherent summation of the individual responses of each transmit-receive array pairs. We present theoretical and simulated point spread functions of the array configurations along with quantitative comparison in terms of the front-end complexity and image quality.


Subject(s)
Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Ultrasonography/methods , Algorithms , Computer Simulation , Transducers
10.
Article in English | MEDLINE | ID: mdl-18334340

ABSTRACT

For three-dimensional (3D) ultrasound imaging, connecting elements of a two-dimensional (2D) transducer array to the imaging system's front-end electronics is a challenge because of the large number of array elements and the small element size. To compactly connect the transducer array with electronics, we flip-chip bond a 2D 16 x 16-element capacitive micromachined ultrasonic transducer (CMUT) array to a custom-designed integrated circuit (IC). Through-wafer interconnects are used to connect the CMUT elements on the top side of the array with flip-chip bond pads on the back side. The IC provides a 25-V pulser and a transimpedance preamplifier to each element of the array. For each of three characterized devices, the element yield is excellent (99 to 100% of the elements are functional). Center frequencies range from 2.6 MHz to 5.1 MHz. For pulse echo operation, the average - 6-dB fractional bandwidth is as high as 125%. Transmit pressures normalized to the face of the transducer are as high as 339 kPa and input-referred receiver noise is typically 1.2 to 2.1 mPa/pHz. The flip-chip bonded devices were used to acquire 3D synthetic aperture images of a wire-target phantom. Combining the transducer array and IC, as shown in this paper, allows for better utilization of large arrays, improves receive sensitivity, and may lead to new imaging techniques that depend on transducer arrays that are closely coupled to IC electronics.


Subject(s)
Electronics, Medical/instrumentation , Image Enhancement/instrumentation , Imaging, Three-Dimensional/instrumentation , Signal Processing, Computer-Assisted , Transducers , Ultrasonography/instrumentation , Algorithms , Equipment Design , Equipment Failure Analysis , Image Enhancement/methods , Image Interpretation, Computer-Assisted/instrumentation , Image Interpretation, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Reproducibility of Results , Sensitivity and Specificity , Systems Integration
11.
Article in English | MEDLINE | ID: mdl-19126489

ABSTRACT

Minimally invasive catheter-based electrophysiological (EP) interventions are becoming a standard procedure in diagnosis and treatment of cardiac arrhythmias. As a result of technological advances that enable small feature sizes and a high level of integration, nonfluoroscopic intracardiac echocardiography (ICE) imaging catheters are attracting increasing attention. ICE catheters improve EP procedural guidance while reducing the undesirable use of fluoroscopy, which is currently the common catheter guidance method. Phased-array ICE catheters have been in use for several years now, although only for side-looking imaging. We are developing a forward-looking ICE catheter for improved visualization. In this effort, we fabricate a 24-element, fine-pitch 1-D array of capacitive micromachined ultrasonic transducers (CMUT), with a total footprint of 1.73 mm x 1.27 mm. We also design a custom integrated circuit (IC) composed of 24 identical blocks of transmit/ receive circuitry, measuring 2.1 mm x 2.1 mm. The transmit circuitry is capable of delivering 25-V unipolar pulses, and the receive circuitry includes a transimpedance preamplifier followed by an output buffer. The CMUT array and the custom IC are designed to be mounted at the tip of a 10-Fr catheter for high-frame-rate forward-looking intracardiac imaging. Through-wafer vias incorporated in the CMUT array provide access to individual array elements from the back side of the array. We successfully flip-chip bond a CMUT array to the custom IC with 100% yield. We coat the device with a layer of polydimethylsiloxane (PDMS) to electrically isolate the device for imaging in water and tissue. The pulse-echo in water from a total plane reflector has a center frequency of 9.2 MHz with a 96% fractional bandwidth. Finally, we demonstrate the imaging capability of the integrated device on commercial phantoms and on a beating ex vivo rabbit heart (Langendorff model) using a commercial ultrasound imaging system.


Subject(s)
Cardiac Catheterization/instrumentation , Electronics/instrumentation , Ultrasonography/instrumentation , Animals , Echocardiography/instrumentation , Electrophysiologic Techniques, Cardiac/instrumentation , Equipment Design , Humans , Image Interpretation, Computer-Assisted/instrumentation , Phantoms, Imaging , Rabbits , Transducers
12.
Sens Actuators A Phys ; 138(1): 221-229, 2007 Jul 20.
Article in English | MEDLINE | ID: mdl-18037982

ABSTRACT

This paper presents a method to provide electrical connection to a 2D capacitive micromachined ultrasonic transducer (CMUT) array. The interconnects are processed after the CMUTs are fabricated on the front side of a silicon wafer. Connections to array elements are made from the back side of the substrate via highly conductive silicon pillars that result from a deep reactive ion etching (DRIE) process. Flip-chip bonding is used to integrate the CMUT array with an integrated circuit (IC) that comprises the front-end circuits for the transducer and provides mechanical support for the trench-isolated array elements. Design, fabrication process and characterization results are presented. The advantages when compared to other through-wafer interconnect techniques are discussed.

13.
Article in English | MEDLINE | ID: mdl-16921904

ABSTRACT

This paper reports on the experimental characterization of collapse-mode operation of capacitive micromachined ultrasonic transducers (CMUTs). CMUTs are conventionally operated by applying a direct current (DC) bias voltage less than the collapse voltage of the membrane, so that the membrane is deflected toward the bottom electrode. In the conventional regime, there is no contact between the membrane and the substrate; the maximum alternating current (AC) displacement occurs at the center of the membrane. In collapse-mode operation, the DC bias voltage is first increased beyond the collapse voltage, then reduced without releasing the collapsed membrane. In collapse-mode operation, the center of the membrane is always in contact with the substrate. In the case of a circular membrane, the maximum AC displacement occurs along the ring formed between the center and the edge of the membrane. The experimental characterization presented in this paper includes impedance measurements in air, pulse-echo experiments in immersion, and one-way optical displacement measurements in immersion for both conventional and collapse-mode operations. A 205-microm x 205-microm 2-D CMUT array element composed of circular silicon nitride membranes is used in the experiments. In pulse-echo experiments, a custom integrated circuit (IC) comprising a pulse driver, a transmit/receive switch, a wideband low-noise preamplifier, and a line driver is used. By reducing the parasitic capacitance, the use of a custom IC enables pulse-echo measurements at high frequencies with a very small transducer. By comparing frequency response and efficiency of the transducer in conventional and collapse regimes, experimental results show that a collapsed membrane can be used to generate and detect ultrasound more efficiently than a membrane operated in the conventional mode. Furthermore, the center frequency of the collapsed membrane can be changed by varying the applied DC voltage. In this study, the center frequency of a collapsed transducer in immersion is shown to vary from 20 MHz to 28 MHz with applied DC bias; the same transducer operates at 10 MHz in the conventional mode. In conventional mode, the maximum peak-to-peak pressure is 370 kPa on the transducer surface for a 40-ns, 25-V unipolar pulse excitation. In collapse mode, a 25-ns, 25-V unipolar pulse generates 590 kPa pressure at the surface of the transducer.

14.
Article in English | MEDLINE | ID: mdl-16846153

ABSTRACT

Forward-viewing ring arrays can enable new applications in intravascular and intracardiac ultrasound. This work presents compelling, full-synthetic, phased-array volumetric images from a forward-viewing capacitive micromachined ultrasonic transducer (CMUT) ring array wire bonded to a custom integrated circuit front end. The CMUT ring array has a diameter of 2 mm and 64 elements each 100 microm x 100 microm in size. In conventional mode, echo signals received from a plane reflector at 5 mm had 70% fractional bandwidth around a center frequency of 8.3 MHz. In collapse mode, 69% fractional bandwidth is measured around 19 MHz. Measured signal-to-noise ratio (SNR) of the echo averaged 16 times was 29 dB for conventional operation and 35 dB for collapse mode. B-scans were generated of a target consisting of steel wires 0.3 mm in diameter to determine resolution performance. The 6 dB axial and lateral resolutions for the B-scan of the wire target are 189 microm and 0.112 radians for 8 MHz, and 78 microm and 0.051 radians for 19 MHz. A reduced firing set suitable for real-time, intravascular applications was generated and shown to produce acceptable images. Rendered three-dimensional (3-D) images of a Palmaz-Schatz stent also are shown, demonstrating that the imaging quality is sufficient for practical applications.


Subject(s)
Echocardiography, Three-Dimensional/instrumentation , Echocardiography/instrumentation , Image Enhancement/instrumentation , Transducers , Ultrasonography, Interventional/instrumentation , Echocardiography/methods , Echocardiography, Three-Dimensional/methods , Equipment Design , Equipment Failure Analysis , Image Enhancement/methods , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Ultrasonography, Interventional/methods
15.
Anal Chem ; 76(13): 3694-8, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15228343

ABSTRACT

This paper presents a microfluidic mixer that uses acoustic stirring created by ultrasonic waves. The ultrasound is introduced into the channel by integrated piezoelectric transducers. The transducers are made of a zinc oxide thin film, which is deposited on the bottom surface of a quartz substrate. The poly(dimethylsiloxane) channel is aligned to the transducers on the top surface of the substrate. The transducers are designed for operation around 450 MHz. The main mechanism of the mixing is the acoustic stirring of the fluid perpendicular to the flow direction. The radiation pressure that is generated by the transducer causes the stirring inside the microfluidic channel. The performance of the mixer is characterized by mixing phenolphthalein solution and sodium hydroxide dissolved in ethyl alcohol. Flow rates on the order of 1-100 microL/min are used. The transducers are driven by 1.2 V(rms) sinusoidal voltages at 450 MHz.


Subject(s)
Microfluidics/instrumentation , Microfluidics/methods , Transducers , Ultrasonics , Phenolphthalein/chemistry , Sensitivity and Specificity , Sodium Hydroxide/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...