Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Fish Biol ; 105(1): 358-371, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38802981

ABSTRACT

Changes in body shape are linked to swimming performance and become relevant for selective breeding programmes in cultured finfish. We studied how the selection for fast growth could affect phenotypes by investigating the relationship between swimming performance and body shape. We also investigated how swimming might affect plasma metabolite concentrations. Critical swimming speed (UCrit), body traits (e.g., BW, body weight; BL, body length; K, condition factor), and plasma lactate and glucose concentrations were evaluated in two cohorts of Australasian snapper (Chrysophrys auratus): one derived from wild broodstock (F1), and the other selected for fast growth (F4). UCrit tests (n = 8) were applied in groups of 10 snapper of similar BW (71.7 g) and BL (14.6 cm). The absolute or relative UCrit values of both cohorts were similar (0.702 m⋅s-1 and 4.795 BL⋅s-1, respectively), despite the F4 cohort displaying a higher K. A positive correlation between K and absolute UCrit (Pearson's r = 0.414) was detected in the F4 cohort, but not in the F1 cohort, which may be linked to differences in body shape. A negative correlation between relative UCrit and body size (Pearson's r between -0.682 and -0.501), but no correlation between absolute UCrit and body size, was displayed in both cohorts. Plasma lactate and glucose concentrations were higher in the F4 cohort at UCrit. Whether a longer selective breeding programme could result in more changes in body shape, potentially affecting swimming performance, should be explored, along with the potential outcomes of the differences in metabolic traits detected.


Subject(s)
Blood Glucose , Lactic Acid , Swimming , Animals , Swimming/physiology , Lactic Acid/blood , Blood Glucose/analysis , Perciformes/growth & development , Perciformes/physiology , Perciformes/anatomy & histology , Phenotype , Body Weight , Body Size , Selection, Genetic , Male , Female
2.
ACS Omega ; 9(20): 22410-22422, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38799332

ABSTRACT

Hydrophilic-coated intermittent catheters have improved the experience of intermittent urinary catheterization for patients compared to conventional gel-lubricated uncoated catheters. However, the incorporation of polyvinylpyrrolidone (PVP) within hydrophilic coatings can lead to significant issues with coating dry-out. Consequently, increased force on catheter withdrawal may cause complications, including urethral microtrauma and pain. Standard methods of evaluating catheter lubricity lack physiological relevance and an understanding of the surface interaction with the urethra. The tribological performance and urethral interaction of commercially available hydrophilic PVP-coated catheters and a coating-free integrated amphiphilic surfactant (IAS) catheter were evaluated by using a biomimetic urethral model designed from a modified coefficient of friction (CoF) assay. T24 human urothelial cells were cultured on customized silicone sheets as an alternate countersurface for CoF testing. Hydrophilic PVP-coated and coating-free IAS catheters were hydrated and the CoF obtained immediately following hydration, or after 2 min, mimicking in vivo indwell time for urine drainage. The model was observed for urethral epithelial cell damage postcatheterization. The majority of hydrophilic PVP-coated catheters caused significantly greater removal of cells from the monolayer after 2 min indwell time, compared to the IAS catheter. Hydrophilic PVP-coated catheters were shown to cause more cell damage than the coating-free IAS catheter. A biomimetic urethral model provides a more physiologically relevant model for understanding the factors that govern the frictional interface between a catheter surface and urethral tissue. From these findings, the use of coating-free IAS catheters instead of hydrophilic PVP-coated catheters may help reduce urethral microtrauma experienced during catheter withdrawal from the bladder, which may lead to a lower risk of infection.

3.
Biomater Adv ; 158: 213765, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38242058

ABSTRACT

Diabetic complications present throughout a wide range of body tissues, however one of the most widely recognised complications remains to be chronic diabetic wounds. Current treatment options largely rely on standard wound treatment routines which provide no promotion of wound healing mechanisms at different physiological stages of repair. Recently materials produced using novel additive manufacturing techniques have been receiving attention for applications in wound care and tissue repair. Additive manufacturing techniques have recently been used in the interest of targeted drug delivery and production of novel materials resembling characteristics of native tissues. The potential to exploit these highly tailorable manufacturing techniques for the design of novel wound care remedies is highly desirable. In the present study two additive manufacturing techniques are combined to produce a scaffold for the treatment of diabetic wounds. The combination of microfluidic manufacturing of an antimicrobial liposome (LP) formulation and a coaxial electrospinning method incorporating both antimicrobial and proangiogenic factors allowed dual delivery of therapeutics to target both infection and lack of vascularisation at wound sites. The coaxial fibres comprised of a polyvinyl alcohol (PVA) core containing vascular endothelial growth factor (VEGF) and a poly (l-lactide-co-ε-caprolactone) (PLCL) shell blended with amoxicillin (Amox). Additionally, a liposomal formulation was produced to incorporate Amox and adhered to the surface of fibres loaded with Amox and VEGF. The liposomal loading provided the potential to deliver a much higher, more clinically relevant dose of Amox without detrimentally changing the mechanical properties of the material. The growth factor release was sustained up to 7-days in vitro. The therapeutic effect of the antibiotic loading was analysed using a disk diffusion method with a significant increase in zone diameter following LP adhesion, proving the full scaffold system had improved efficacy against both Gram-positive and Gram-negative strains. Additionally, the dual-loaded scaffolds show enhanced potential for supporting vascular growth in vitro, as demonstrated via a viability assay and tubule formation studies. Results showed a significant increase in the average total number of tubes from 10 in control samples to 77 in samples fully-loaded with Amox and VEGF.


Subject(s)
Anti-Infective Agents , Diabetes Mellitus , Humans , Amoxicillin/pharmacology , Amoxicillin/therapeutic use , Vascular Endothelial Growth Factor A , Liposomes
4.
Biomater Adv ; 157: 213735, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154402

ABSTRACT

Inflammatory bowel disease (IBD) are chronic inflammatory conditions which cause significant patient morbidity. Local drug delivery to the colon can improve treatment efficacy and reduce side effects associated with IBD treatment. Smart drug delivery systems are designed to regulate the release of therapeutic agents at the desired site of action. pH-responsive drug carriers have been previously utilised for improved oral drug delivery beyond stomach harsh conditions. Additionally, the colon possesses a diverse microbiome secreting bioactive molecules e.g., enzymes, that can be exploited for targeted drug delivery. We herein synthesised and characterised a 2-hydroxyethyl methacrylate and methacrylic acid copolymer, crosslinked with an azobenzyl crosslinker, that displayed pH- and enzyme-responsive properties. The swelling and drug release from hydrogel were analysed in pH 1.2, 6.5 and 7.4 buffers, and in the presence of rat caecal matter using metronidazole and mesalamine as model BCS Class I and IV drugs, respectively. Swelling studies displayed pH-responsive swelling behaviour, where swelling was maximum at pH 7.4 and minimum at pH 1.2 (69 % versus 32 %). Consequently, drug release was limited in gastric and small intestinal conditions but increased significantly when exposed to colonic conditions containing caecal matter. This system displays promising capacity for achieving colon-targeted drug delivery with enhanced dissolution of poorly water-soluble drugs for local treatment of IBD and other colon-targeted therapies.


Subject(s)
Inflammatory Bowel Diseases , Water , Rats , Animals , Humans , Water/pharmacology , Drug Delivery Systems , Drug Carriers , Colon , Inflammatory Bowel Diseases/drug therapy
5.
Int J Pharm ; 650: 123710, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38097147

ABSTRACT

With an increasing concern of global antimicrobial resistance, the efforts to improve the formulation of a narrowing library of therapeutic antibiotics must be confronted. The liposomal encapsulation of antibiotics using a novel and sustainable microfluidic method has been employed in this study to address this pressing issue, via a targeted, lower-dose medical approach. The study focusses upon microfluidic parameter optimisation, formulation stability, cytotoxicity, and future applications. Particle sizes of circa. 130 nm, with viable short-term (28-day) physical stability were obtained, using two different non-cytotoxic liposomal formulations, both of which displayed suitable antibacterial efficacy. The microfluidic method allowed for high encapsulation efficiencies (≈77 %) and the subsequent in vitro release profile suggested high limits of antibiotic dissociation from the nanovessels, achieving 90% release within 72 h. In addition to the experimental data, the growing use of poly(ethylene) glycol (PEG) within lipid-based formulations is discussed in relation to anti-PEG antibodies, highlighting the key pharmacological differences between PEGylated and non-PEGylated formulations and their respective advantages and drawbacks. It's surmised that in the case of the formulations used in this study, the addition of PEG upon the liposomal membrane would still be a beneficial feature to possess owing to beneficial features such as stability, antibiotic efficacy and the capacity to further modify the liposomal membrane.


Subject(s)
Amoxicillin , Microfluidics , Liposomes , Anti-Bacterial Agents , Polyethylene Glycols
6.
Mol Ecol Resour ; 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37712134

ABSTRACT

The unprecedented loss of global biodiversity is linked to multiple anthropogenic stressors. New conservation technologies are urgently needed to mitigate this loss. The rights, knowledge and perspectives of Indigenous peoples in biodiversity conservation-including the development and application of new technologies-are increasingly recognised. Advances in germplasm cryopreservation and germ cell transplantation (termed 'broodstock surrogacy') techniques offer exciting tools to preserve biodiversity, but their application has been underappreciated. Here, we use teleost fishes as an exemplar group to outline (1) the power of these techniques to preserve genome-wide genetic diversity, (2) the need to apply a conservation genomic lens when selecting individuals for germplasm cryobanking and broodstock surrogacy and (3) the value of considering the cultural significance of these genomic resources. We conclude by discussing the opportunities and challenges of these techniques for conserving biodiversity in threatened teleost fish and beyond.

7.
Biomater Adv ; 153: 213557, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37441958

ABSTRACT

Diabetic foot ulcers (DFUs) are a crucial complication of diabetes, as in a diabetic wound, each step of the physiological healing process is affected. This entails a more easily infectable wound, and delayed tissue regeneration due to the inflammation that occurs, leading to a drastic decrease in the overall patient's quality of life. As a strategy to manage DFUs, skin alternatives and wound dressings are currently receiving a lot of attention as they keep the wound environment "under control", while providing bioactive compounds that help to manage infection and inflammation and promote tissue repair. This has been made possible thanks to the advent of emerging technologies such as 3D Bioprinting to produce skin resembling constructs or microfluidics (MFs) that allows the manufacture of nanoparticles (NPs) that act as drug carriers, in a prompt and less expensive way. In the present proof-of-concept study, the possibility of combining two novel and appealing techniques in the manufacturing of wound dressings has been demonstrated for first time. The novelty of this work consists in the combination of liposomes (LPs) encapsulating the active pharmaceutical ingredient (API) into a hydrogel that is further printed into a three-dimensional scaffold for wound dressing; to the knowledge of the authors this has never been done before. A grid-shaped scaffold has been produced through the coaxial 3D bioprinting technique which has allowed to combine, in one single filament, two different bioinks. The inner core of the filament is a nanocomposite hydrogel consisting of hydroxyethyl cellulose (HEC) and PEGylated LPs encapsulated with thyme oil (TO) manufactured via MFs for the first time. The outer shell of the filament, instead, is represented by a hybrid hydrogel composed of sodium alginate/cellulose nanocrystals (SA/CNC) and enriched with free TO. This provides a combination of two different release ratios of the API, a bulk release for the first 24 h thanks to the free TO in the shell of the filament and a sustained release for up to 10 days provided from the API inside the LPs. Confocal Microscopy verified the actual presence of the LPs inside the scaffold after printing and evaluation using the zone of inhibition test proved the antibacterial activity of the manufactured scaffolds against both Gram-positive and Gram-negative bacteria.


Subject(s)
Bioprinting , Diabetes Mellitus , Diabetic Foot , Humans , Anti-Bacterial Agents , Lipopolysaccharides , Microfluidics , Quality of Life , Gram-Negative Bacteria , Gram-Positive Bacteria , Bandages , Hydrogels , Diabetic Foot/drug therapy , Wound Healing , Inflammation , Cellulose/therapeutic use
8.
Analyst ; 148(9): 2002-2011, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37039025

ABSTRACT

Biofilms are complex environments where matrix effects from components such as extracellular polymeric substances and proteins can strongly affect SERS performance. Here the interactions between SERS-enhancing Ag and Au particles were studied using ex situ biofilms (es-biofilms), which were more homogenous than in situ biofilm samples. This allowed systematic quantitative studies, where samples could be accurately diluted and analysed, to be carried out. Strong signals from intrinsic marker compounds were found for the Pseudomonas aeruginosa and Staphylococcus aureus extracted es-biofilms, which the standard addition method showed were due to 2 × 10-3 mol dm-3 pyocyanin or the equivalent of 1 × 10-4 mol dm-3 adenine, respectively. The es-biofilms hindered aggregation of Ag colloids more than Au but for both Au and Ag nanospheres the presence of es-biofilm reduced SERS signals through a combination of poorer aggregation and blocking of surface sites. For Ag, the effect of lower aggregation was to reduce the signals by a factor of ca. 2×, while site blocking gave a further 10× reduction for adenine. Similar results were found for Au nanospheres with adenine, although these particles gave low enhancement with pyocyanin. Nanostars were found to be unaffected by reduced aggregation and also showed lower site blocking effects, giving more reproducible signals than those from aggregated particles, which compensated for their lower enhancement factor. These results provide a rational basis for selecting enhancing substrates for use in in situ studies, where the further complexity means that it is important to begin with well-understood and controllable enhancing media.


Subject(s)
Metal Nanoparticles , Spectrum Analysis, Raman , Spectrum Analysis, Raman/methods , Pyocyanine/chemistry , Biofilms , Metal Nanoparticles/chemistry , Pseudomonas aeruginosa/chemistry , Gold/chemistry
9.
J Photochem Photobiol B ; 241: 112671, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36870247

ABSTRACT

Antimicrobial resistance is an ever-growing global concern, making the development of alternative antimicrobial agents and techniques an urgent priority to protect public health. Antimicrobial photodynamic therapy (aPDT) is one such promising alternative, which harnesses the cytotoxic action of reactive oxygen species (ROS) generated upon irradiation of photosensitisers (PSs) with visible light to destroy microorganisms. In this study we report a convenient and facile method to produce highly photoactive antimicrobial microparticles, exhibiting minimal PS leaching, and examine the effect of particle size on antimicrobial activity. A ball milling technique produced a range of sizes of anionic p(HEMA-co-MAA) microparticles, providing large surface areas available for electrostatic attachment of the cationic PS, Toluidine Blue O (TBO). The TBO-incorporated microparticles showed a size-dependent effect on antimicrobial activity, with a decrease in microparticle size resulting in an increase in the bacterial reductions achieved when irradiated with red light. The >6 log10Pseudomonas aeruginosa and Staphylococcus aureus reductions (>99.9999%) achieved within 30 and 60 min, respectively, by TBO-incorporated >90 µm microparticles were attributed to the cytotoxic action of the ROS generated by TBO molecules bound to the microparticles, with no PS leaching from these particles detected over this timeframe. TBO-incorporated microparticles capable of significantly reducing the bioburden of solutions with short durations of low intensity red light irradiation and minimal leaching present an attractive platform for various antimicrobial applications.


Subject(s)
Photochemotherapy , Photosensitizing Agents , Photosensitizing Agents/pharmacology , Reactive Oxygen Species/pharmacology , Photochemotherapy/methods , Light , Tolonium Chloride/pharmacology , Staphylococcus aureus
10.
Anim Reprod Sci ; 242: 107014, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35671595

ABSTRACT

The wallago catfish (Wallago attu) is a new potential fish for aquaculture in Vietnam. Data related to the reproductive cycle of W. attu in captivity are, however, not available. To provide reliable indicators for oocyte maturation (OM) and the spawning season of the captive W. attu, this study investigated the temporal variation in hepatosomatic and gonadosomatic indices, oocyte diameter and color (greenish vs yellowish), germinal vesicle migration, and plasma concentrations of estradiol-17ß (E2) and vitellogenin (Vtg) in female broodstock in association with changes in light density, temperature and amount of rainfall during the reproductive cycle. The results of this study displayed a clear seasonality in all the investigated parameters. The highest concentration of E2 (2.6 ± 3.5 ng/mL) was found in April, followed by a peak of Vtg (543 ± 43 ng/mL) in June. Meanwhile, the largest mean oocyte diameter (1.70 ± 0.02 mm) was observed in June. The shortest distance between the germinal vesicle and the edge of the oocyte (0.20 ± 0.01 mm) was recorded in July. Correspondingly, the amount of rainfall increased remarkably in July from 43.9 mm to over 200 mm in August. Taken together, we conclude that OM and the onset of the spawning season of captive W. attu occur in July and August, respectively. The percentage of greenish oocytes increased significantly over sampling time points. The changes in the color of oocytes combined with oocyte diameter could, therefore, be considered as promising indicators to predict the OM and spawning season of captive W. attu.


Subject(s)
Catfishes , Animals , Estradiol , Female , Oocytes , Oogenesis , Reproduction , Vitellogenins
11.
Evol Appl ; 15(5): 751-772, 2022 May.
Article in English | MEDLINE | ID: mdl-35603033

ABSTRACT

Relationships with place provide critical context for characterizing biocultural diversity. Yet, genetic and genomic studies are rarely informed by Indigenous or local knowledge, processes, and practices, including the movement of culturally significant species. Here, we show how place-based knowledge can better reveal the biocultural complexities of genetic or genomic data derived from culturally significant species. As a case study, we focus on culturally significant southern freshwater koura (crayfish) in Aotearoa me Te Waipounamu (New Zealand, herein Aotearoa NZ). Our results, based on genotyping-by-sequencing markers, reveal strong population genetic structure along with signatures of population admixture in 19 genetically depauperate populations across the east coast of Te Waipounamu. Environment association and differentiation analyses for local adaptation also indicate a role for hydroclimatic variables-including temperature, precipitation, and water flow regimes-in shaping local adaptation in koura. Through trusted partnerships between community and researchers, weaving genomic markers with place-based knowledge has both provided invaluable context for the interpretation of data and created opportunities to reconnect people and place. We envisage such trusted partnerships guiding future genomic research for culturally significant species in Aotearoa NZ and beyond.

12.
Evol Appl ; 15(2): 237-248, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35233245

ABSTRACT

Ectotherm species, such as marine fishes, depend on environmental temperature to regulate their vital functions. In finfish aquaculture production, being able to predict physiological responses in growth and other economic traits to temperature is crucial to address challenges inherent in the selection of grow-out locations. This will become an even more significant issue under the various predicted future climate change scenarios. In this study, we used the marine teleost silver trevally (Pseudocaranx georgianus), a species currently being explored as a candidate for aquaculture in New Zealand, as a model to study plasticity in gene expression patterns and growth in response to different temperatures. Using a captive study population, temperature conditions were experimentally manipulated for 1 month to mimic seasonal extremes. Phenotypic differences in growth were measured in 400 individuals, and gene expression patterns of pituitary gland and liver were determined in a subset of 100 individuals. Results showed that growth increased 50% in the warmer compared with the colder condition, suggesting that temperature has a large impact on metabolic activities associated with growth. A total of 265,116,678 single-end RNA sequence reads were aligned to the trevally genome, and 28,416 transcript models were developed (27,887 of these had GenBank accessions, and 17,980 unique gene symbols). Further filtering reduced this set to 8597 gene models. 39 and 238 differentially expressed genes (DEGs) were found in the pituitary gland and the liver, respectively (|log2FC| > 0.26, p-value < 0.05). Of these, 6 DEGs showed a common expression pattern between both tissues, all involved in housekeeping functions. Temperature-modulated growth responses were linked to major pathways affecting metabolism, cell regulation and signalling, previously shown to be important for temperature tolerance in other fish species. An interesting finding of this study was that genes linked to the reproductive system were up-regulated in both tissues in the high treatment, indicating the onset of sexual maturation. Few studies have investigated the thermal plasticity of the gene expression in the main organs of the somatotropic axis simultaneously. Our findings indicate that trevally exhibit substantial growth differences and predictable plastic regulatory responses to different temperature conditions. We identified a set of genes that provide a list of candidates for further investigations for selective breeding objectives and how populations may adapt to increasing temperatures.

13.
BMC Genomics ; 22(1): 785, 2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34727894

ABSTRACT

BACKGROUND: The genetic control of sex determination in teleost species is poorly understood. This is partly because of the diversity of mechanisms that determine sex in this large group of vertebrates, including constitutive genes linked to sex chromosomes, polygenic constitutive mechanisms, environmental factors, hermaphroditism, and unisexuality. Here we use a de novo genome assembly of New Zealand silver trevally (Pseudocaranx georgianus) together with sex-specific whole genome sequencing data to detect sexually divergent genomic regions, identify candidate genes and develop molecular makers. RESULTS: The de novo assembly of an unsexed trevally (Trevally_v1) resulted in a final assembly of 579.4 Mb in length, with a N50 of 25.2 Mb. Of the assembled scaffolds, 24 were of chromosome scale, ranging from 11 to 31 Mb in length. A total of 28,416 genes were annotated after 12.8 % of the assembly was masked with repetitive elements. Whole genome re-sequencing of 13 wild sexed trevally (seven males and six females) identified two sexually divergent regions located on two scaffolds, including a 6 kb region at the proximal end of chromosome 21. Blast analyses revealed similarity between one region and the aromatase genes cyp19 (a1a/b) (E-value < 1.00E-25, identity > 78.8 %). Males contained higher numbers of heterozygous variants in both regions, while females showed regions of very low read-depth, indicative of male-specificity of this genomic region. Molecular markers were developed and subsequently tested on 96 histologically-sexed fish (42 males and 54 females). Three markers amplified in absolute correspondence with sex (positive in males, negative in females). CONCLUSIONS: The higher number of heterozygous variants in males combined with the absence of these regions in females support a XY sex-determination model, indicating that the trevally_v1 genome assembly was developed from a male specimen. This sex system contrasts with the ZW sex-determination model documented in closely related carangid species. Our results indicate a sex-determining function of a cyp19a1a-like gene, suggesting the molecular pathway of sex determination is somewhat conserved in this family. The genomic resources developed here will facilitate future comparative work, and enable improved insights into the varied sex determination pathways in teleosts. The sex marker developed in this study will be a valuable resource for aquaculture selective breeding programmes, and for determining sex ratios in wild populations.


Subject(s)
Fishes , Genome , Animals , Female , Fishes/genetics , Genomics , Male , New Zealand , Sex Chromosomes/genetics
14.
Int J Antimicrob Agents ; 58(1): 106360, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33992750

ABSTRACT

BACKGROUND: Bacterial spores are an important consideration in healthcare decontamination, with cross-contamination highlighted as a major route of transmission due to their persistent nature. Their containment is extremely difficult due to the toxicity and cost of first-line sporicides. METHODS: Susceptibility of Staphylococcus aureus, Bacillus subtilis, Pseudomonas aeruginosa and Escherichia coli to phenothiazinium photosensitizers and cationic surfactants under white- or red-light irradiation was assessed by determination of minimum inhibitory concentrations, minimum bactericidal concentrations and time-kill assays. B. subtilis spore eradication was assessed via time-kill assays, with and without nutrient and non-nutrient germinant supplementation of photosensitizer, surfactant and photosensitizer-surfactant solutions in the presence and absence of light. RESULTS: Under red-light irradiation, >5-log10 colony-forming units/mL reduction of vegetative bacteria was achieved within 10 min with toluidine blue O (TBO) and methylene blue (MB). Cationic surfactant addition did not significantly enhance spore eradication by photosensitizers (P>0.05). However, addition of a nutrient germinant mixture to TBO achieved a 6-log10 reduction after 20 min of irradiation, while providing 1-2 log10 improvement in spore eradication for MB and pyronin Y. CONCLUSIONS: Light-activated photosensitizer solutions in the presence of surfactants and germination-promoting agents provide a highly effective method to eradicate dormant and vegetative bacteria. These solutions could provide a useful alternative to traditional chemical agents used for high-level decontamination and infection control within health care.


Subject(s)
Bacteria/drug effects , Disinfectants/pharmacology , Equipment and Supplies/microbiology , Photosensitizing Agents/pharmacology , Spores, Bacterial/drug effects , Sterilization/methods , Surface-Active Agents/pharmacology , Bacillus subtilis/drug effects , Bacterial Infections/prevention & control , Cross Infection/prevention & control , Escherichia coli/drug effects , Humans , Light , Methylene Blue/pharmacology , Microbial Sensitivity Tests , Pseudomonas aeruginosa/drug effects , Pyronine/pharmacology , Staphylococcus aureus/drug effects , Tolonium Chloride/pharmacology
15.
J Photochem Photobiol B ; 214: 112098, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33276276

ABSTRACT

Infectious disease outbreaks within healthcare facilities can exacerbate patient illness and, in some cases, can be fatal. Contaminated surfaces and medical devices can act as a reservoir for transmission of pathogens and have been linked to the rising incidence of healthcare-acquired infections. Antimicrobial surfaces can reduce microbial contamination and transmission and have emerged as a crucial component in healthcare infection control in recent years. The aim of this study was to manufacture antimicrobial polymer surfaces containing the photosensitiser, toluidine blue O (TBO), using hot-melt extrusion (HME). Several concentrations of TBO were combined with a range of medically relevant polymers via HME. TBO-polymer extrudates displayed no significant differences in thermal properties and surface wettability relative to non-loaded polymers. Minimal leaching of TBO from the surface was confirmed through in vitro release studies. Antibacterial activity was observed to vary according to the polymer and concentration of incorporated TBO, with PEBAX® polymers modified with 0.1% w/w TBO demonstrating promising reductions of >99.9% in viable bacterial adherence of a range of common nosocomial pathogens, including Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii and Escherichia coli. This study demonstrates the use of HME as a facile alternative method to common encapsulation strategies for the production of light-activated antimicrobial polymer surfaces. This method can be easily translated to large-scale manufacture and, in addition, the polymers constitute promising antimicrobial base materials for the rapidly growing additive manufacturing industries.


Subject(s)
Anti-Infective Agents/chemistry , Drug Carriers/chemistry , Infections/therapy , Photosensitizing Agents/chemistry , Polymers/chemistry , Tolonium Chloride/chemistry , Anti-Infective Agents/pharmacology , Boronic Acids/chemistry , Drug Liberation , Humans , Nylons/chemistry , Photochemotherapy , Polymers/pharmacology , Radiation Exposure , Surface Properties , Transition Temperature
16.
ACS Omega ; 5(14): 7771-7781, 2020 Apr 14.
Article in English | MEDLINE | ID: mdl-32309685

ABSTRACT

Microbial fouling is a costly issue, which impacts a wide range of industries, such as healthcare, food processing, and construction industries, and improved strategies to reduce the impact of fouling are urgently required. Slippery liquid-infused porous surfaces (SLIPSs) have recently been developed as a bioinspired approach to prevent antifouling. Here, we report the development of slippery, superhydrophilic surfaces by infusing roughened poly(vinyl chloride) (PVC) substrates with phosphonium ionic liquids (PILs). These surfaces were capable of reducing viable bacterial adherence by Staphylococcus aureus and Pseudomonas aeruginosa by >6 log10 cfu mL-1 after 24 h under static conditions relative to control PVC. Furthermore, we report the potential of a series of asymmetric quaternary alkyl PILs with varying alkyl chain lengths (C4-C18) and counteranions to act as antimicrobial agents against both Gram +ve and Gram -ve bacteria and illustrate their potential as antimicrobial alternatives to traditional fluorinated lubricants commonly used in the synthesis of SLIPSs.

17.
PLoS One ; 15(2): e0229391, 2020.
Article in English | MEDLINE | ID: mdl-32092110

ABSTRACT

Our previous work documented significant advancements in steroid-induced progression of oogenesis, demonstrating that co-treatment of female eels with 11-ketotestosterone (11KT) and estradiol-17ß (E2) successfully induced uptake of vitellogenin by oocytes. Here we evaluate the effects of this steroid co-treatment on subsequent time to ovulation and egg quality in shortfinned eels artificially matured by hypophysation. Co-treatment with 11KT (1 mg) and E2 (0.2 or 2 mg) significantly reduced time to ovulation and therefore, the amount of pituitary homogenate required, without any detrimental effects on gonadosomatic index, oocyte diameter or the total weight of stripped eggs. E2 treatment resulted in promising increases in fertilization rates. These indicators suggest that co-treatment with 11KT and E2 holds promise for future artificial maturation practices in terms of minimising fish handling and stress, and of reducing the need for expensive pituitary preparations.


Subject(s)
Anguilla , Estradiol/pharmacology , Oogenesis/drug effects , Ovulation Induction , Testosterone/analogs & derivatives , Anguilla/physiology , Animals , Female , Fertility/drug effects , Oocytes/cytology , Oocytes/drug effects , Oocytes/physiology , Oogenesis/physiology , Ovary/cytology , Ovary/drug effects , Ovulation Induction/methods , Ovulation Induction/veterinary , Testosterone/pharmacology
18.
Gen Comp Endocrinol ; 291: 113404, 2020 05 15.
Article in English | MEDLINE | ID: mdl-32001324

ABSTRACT

The role of gonadotropins during early ovarian development in fish remains little understood. Concentrations of gonadotropins were therefore experimentally elevated in vivo by administration of recombinant follicle-stimulating hormone (rec-Fsh) or human chorionic gonadotropin (hCG) and the effects on ovarian morphology, sex steroid levels and mRNA levels of genes expressed in pituitary and ovary examined. Hormones were injected thrice at weekly intervals in different doses (20, 100 or 500 µg/kg BW for rec-Fsh and 20, 100 or 500 IU/kg BW for hCG). All treatments, especially at the highest doses of either rec-Fsh or hCG, induced ovarian development, reflected in increased oocyte size and lipid uptake. Both gonadotropins up-regulated follicle-stimulating hormone receptor (fshr) mRNA levels and plasma levels of estradiol-17ß (E2). Exogenous gonadotropins largely decreased the expression of follicle-stimulating hormone ß-subunit (fshb) and had little effect on those of luteinizing hormone ß-subunit (lhb) in the pituitary. It is proposed that the effects of hCG on ovarian development in previtellogenic eels could be indirect as a significant increase in plasma levels of 11-ketotestosterone (11-KT) was found in eels treated with hCG. Using rec-Fsh and hCG has potential for inducing puberty in eels in captivity, and indeed, in teleost fish at large.


Subject(s)
Anguilla/growth & development , Oocytes/metabolism , Testosterone/analogs & derivatives , Vitellogenins/metabolism , Anguilla/genetics , Animals , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Aromatase/genetics , Aromatase/metabolism , Chorionic Gonadotropin/pharmacology , Cytochrome P450 Family 11/genetics , Cytochrome P450 Family 11/metabolism , Estradiol/metabolism , Female , Follicle Stimulating Hormone/genetics , Follicle Stimulating Hormone/metabolism , Gonadal Steroid Hormones/genetics , Gonadal Steroid Hormones/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, FSH/genetics , Receptors, FSH/metabolism , Testosterone/metabolism
19.
Article in English | MEDLINE | ID: mdl-30374566

ABSTRACT

Silvering has been associated with advancing osmoregulatory ability. Given the demonstrated role of 11-ketotestosterone (11KT) in mediating many of the silvering-related changes, we investigated the role of 11KT in driving this advanced osmoregulatory ability in the New Zealand short-finned eel (Anguilla australis). Yellow (non-migratory) eels with or without 11KT implants and blank-implanted silver (migratory) eels, either held in freshwater or subjected to seawater challenge, were sampled to determine serum [Na+] and [Cl-], pituitary prolactin mRNA levels, gill Na+/K+-ATPase activity and gill mRNA levels for Na+/K+-ATPase-α1 subunit and for Na+/K+/2Cl- co-transporter-1α-subunit. Developmental stage and 11KT treatment advanced the eels' osmoregulatory ability. Thus, serum [Na+] and [Cl-] were affected by developmental stage and 11KT treatment upon seawater challenge. However, seawater challenge, not 11KT treatment or developmental stage, produced the strongest and the most consistent effects on A. australis osmoregulatory processes, inducing significant effects in all the relevant parameters we measured. In light of our results and in view of the eel's marine ancestry, we contend that A. australis, or freshwater eels in general, are highly tolerant and able to adapt quickly to changing salinities even at the yellow stage, which may preclude a critical need for an advanced osmoregulatory ability at silvering.


Subject(s)
Anguilla/growth & development , Anguilla/metabolism , Osmoregulation/physiology , Pigmentation , Testosterone/analogs & derivatives , Animals , Chlorides/blood , Female , Fresh Water/chemistry , Gills/metabolism , Ions/blood , Osmolar Concentration , Pigmentation/physiology , Pituitary Gland/metabolism , Prolactin/metabolism , RNA, Messenger/metabolism , Seawater/chemistry , Sodium/blood , Sodium-Potassium-Exchanging ATPase/metabolism , Testosterone/metabolism
20.
Gen Comp Endocrinol ; 257: 86-96, 2018 02 01.
Article in English | MEDLINE | ID: mdl-28851561

ABSTRACT

In order to better understand how photo-thermal conditions affect oogenesis in captive-bred F1 hapuku, a wreckfish considered for aquaculture in New Zealand, juvenile (pre-pubertal) fish were assigned to one of two regimes: exposed to a constant temperature of 17°C (CT group) or to seasonally varying temperatures (VT group range: 10-17°C), both under simulated ambient photoperiod, for nearly 2years. Development in females was monitored through repeated gonadal biopsies (histology; target gene mRNA levels) and blood sampling (plasma levels of estradiol-17ß; E2). Very little evidence of advancing oogenesis was found in the first year of study, when fish were in their 4th year. In the subsequent year, a proportion of fish reached the pre-spawning stage (fully-grown ovarian follicles); the proportion of females reaching this stage was notably higher in the VT (62%) than the CT (28%) group. Of the few females that did reach maturity in the CT group, significantly lower levels of plasma E2 were observed relative to those in fish from the VT group possibly indicating a temperature-induced endocrine impairment during oogenesis. Interestingly, females that did not reach the pre-spawning stage presented with a small transient, but significant increase in oocyte diameters and plasma E2, suggestive of a dummy run. Clear seasonality was observed for fish under both photo-thermal regimes, and this was reflected in plasma E2 levels and transcript abundances of aromatase, fshr and luteinizing hormone receptor in the ovary; these end points all peaked in maturing females during the late or post-vitellogenic stage. We conclude that captive female F1 hapuku first mature as five-year-olds and that exposure to a decreased temperature is important for appropriate progression of oogenesis.


Subject(s)
Crosses, Genetic , Ovary/growth & development , Perciformes/growth & development , Perciformes/physiology , Temperature , Animals , Body Weight , Estradiol/blood , Female , Male , Oocytes/metabolism , Oogenesis , Perciformes/anatomy & histology , Perciformes/blood , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproduction
SELECTION OF CITATIONS
SEARCH DETAIL
...