Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Precis Clin Med ; 1(2): 75-87, 2018 Sep.
Article in English | MEDLINE | ID: mdl-35693198

ABSTRACT

Breast and ovarian cancers now account for one in three cancers in Indian women and their incidence is rising. Major differences in the clinical presentation of breast and ovarian cancers exist between India and the United Kingdom. For example, Indian patients with breast cancer typically present a decade earlier than in the UK. Reasons for this could be multifactorial, including differences in underlying biology, environmental risks, and other systematic factors including access to screening. One possible explanation lies in variable incidence or penetrance of germline mutations in genes such as BRCA1 and BRCA2. We performed a methodical database and literature review to investigate the prevalence and spectrum of high-risk cancer susceptibility genes in Indian patients with breast and ovarian cancers. We identified 148 articles, but most studies were small, with inconsistent inclusion criteria and based on heterogeneous technologies, so that mutation frequency could not be reliably ascertained. Data were also often lacking on penetrance, histopathology, and survival outcomes. After filtering out unsuitable studies, only 13 remained, comprising 1028 patients. Large-scale research studies are urgently needed to determine mutation prevalence, spectra, and clinico-pathological features, and hence derive guidelines for screening, treatment, and prevention specific to the Indian population.

3.
Oncotarget ; 6(31): 30453-71, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26421711

ABSTRACT

Here, we developed an isogenic cell model of "stemness" to facilitate protein biomarker discovery in breast cancer. For this purpose, we used knowledge gained previously from the study of the mouse mammary tumor virus (MMTV). MMTV initiates mammary tumorigenesis in mice by promoter insertion adjacent to two main integration sites, namely Int-1 (Wnt1) and Int-2 (Fgf3), which ultimately activates Wnt/ß-catenin signaling, driving the propagation of mammary cancer stem cells (CSCs). Thus, to develop a humanized model of MMTV signaling, we over-expressed WNT1 and FGF3 in MCF7 cells, an ER(+) human breast cancer cell line. We then validated that MCF7 cells over-expressing both WNT1 and FGF3 show a 3.5-fold increase in mammosphere formation, and that conditioned media from these cells is also sufficient to promote stem cell activity in untransfected parental MCF7 and T47D cells, as WNT1 and FGF3 are secreted factors. Proteomic analysis of this model system revealed the induction of i) EMT markers, ii) mitochondrial proteins, iii) glycolytic enzymes and iv) protein synthesis machinery, consistent with an anabolic CSC phenotype. MitoTracker staining validated the expected WNT1/FGF3-induced increase in mitochondrial mass and activity, which presumably reflects increased mitochondrial biogenesis. Importantly, many of the proteins that were up-regulated by WNT/FGF-signaling in MCF7 cells, were also transcriptionally over-expressed in human breast cancer cells in vivo, based on the bioinformatic analysis of public gene expression datasets of laser-captured patient samples. As such, this isogenic cell model should accelerate the discovery of new biomarkers to predict clinical outcome in breast cancer, facilitating the development of personalized medicine.Finally, we used mitochondrial mass as a surrogate marker for increased mitochondrial biogenesis in untransfected MCF7 cells. As predicted, metabolic fractionation of parental MCF7 cells, via MitoTracker staining, indicated that high mitochondrial mass is a new metabolic biomarker for the enrichment of anabolic CSCs, as functionally assessed by mammosphere-forming activity. This observation has broad implications for understanding the role of mitochondrial biogenesis in the propagation of stem-like cancer cells. Technically, this general metabolic approach could be applied to any cancer type, to identify and target the mitochondrial-rich CSC population.The implications of our work for understanding the role of mitochondrial metabolism in viral oncogenesis driven by random promoter insertions are also discussed, in the context of MMTV and ALV infections.


Subject(s)
Biomarkers, Tumor/physiology , Breast Neoplasms/pathology , Fibroblast Growth Factor 3/biosynthesis , Mitochondria/physiology , Wnt1 Protein/biosynthesis , Culture Media, Conditioned/pharmacology , Female , Fibroblast Growth Factor 3/metabolism , Humans , MCF-7 Cells , Mammary Tumor Virus, Mouse/genetics , Mammary Tumor Virus, Mouse/pathogenicity , Membrane Potential, Mitochondrial/physiology , Mitochondria/metabolism , Models, Biological , Neoplastic Stem Cells/cytology , Neoplastic Stem Cells/pathology , Spheroids, Cellular/cytology , Tumor Cells, Cultured , Wnt Signaling Pathway/physiology , Wnt1 Protein/metabolism
4.
Oncotarget ; 6(16): 14687-99, 2015 Jun 10.
Article in English | MEDLINE | ID: mdl-26008983

ABSTRACT

Macrophages are a major cellular constituent of the tumour stroma and contribute to breast cancer prognosis. The precise role and treatment strategies to target macrophages remain elusive. As macrophage infiltration is associated with poor prognosis and high grade tumours we used the THP-1 cell line to model monocyte-macrophage differentiation in co-culture with four breast cancer cell lines (MCF7, T47D, MDA-MB-231, MDA-MB-468) to model in vivo cellular interactions. Polarisation into M1 and M2 subtypes was confirmed by specific cell marker expression of ROS and HLA-DR, respectively. Co-culture with all types of macrophage increased migration of ER-positive breast cancer cell lines, while M2-macrophages increased mammosphere formation, compared to M1-macrophages, in all breast cancer cells lines. Treatment of cells with Zoledronate in co-culture reduced the "pro-tumourigenic" effects (increased mammospheres/migration) exerted by macrophages. Direct treatment of breast cancer cells in homotypic culture was unable to reduce migration or mammosphere formation.Macrophages promote "pro-tumourigenic" cellular characteristics of breast cancer cell migration and stem cell activity. Zoledronate targets macrophages within the microenvironment which in turn, reduces the "pro-tumourigenic" characteristics of breast cancer cells. Zoledronate offers an exciting new treatment strategy for both primary and metastatic breast cancer.


Subject(s)
Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Macrophages/metabolism , Monocytes/metabolism , Adult , Aged , Aged, 80 and over , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Female , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...