Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Br J Cancer ; 126(8): 1168-1177, 2022 05.
Article in English | MEDLINE | ID: mdl-34969998

ABSTRACT

BACKGROUND: Improving cancer immunotherapy long-term clinical benefit is a major priority. It has become apparent that multiple axes of immune suppression restrain the capacity of T cells to provide anti-tumour activity including signalling through PD1/PD-L1 and LAG3/MHC-II. METHODS: CB213 has been developed as a fully human PD1/LAG3 co-targeting multi-specific Humabody composed of linked VH domains that avidly bind and block PD1 and LAG3 on dual-positive T cells. We present the preclinical primary pharmacology of CB213: biochemistry, cell-based function vs. immune-suppressive targets, induction of T cell proliferation ex vivo using blood obtained from NSCLC patients, and syngeneic mouse model anti-tumour activity. CB213 pharmacokinetics was assessed in cynomolgus macaques. RESULTS: CB213 shows picomolar avidity when simultaneously engaging PD1 and LAG3. Assessing LAG3/MHC-II or PD1/PD-L1 suppression individually, CB213 preferentially counters the LAG3 axis. CB213 showed superior activity vs. αPD1 antibody to induce ex vivo NSCLC patient T cell proliferation and to suppress tumour growth in a syngeneic mouse tumour model, for which both experimental systems possess PD1 and LAG3 suppressive components. Non-human primate PK of CB213 suggests weekly clinical administration. CONCLUSIONS: CB213 is poised to enter clinical development and, through intercepting both PD1 and LAG3 resistance mechanisms, may benefit patients with tumours escaping front-line immunological control.


Subject(s)
Antigens, CD/immunology , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Animals , Antigens, CD/metabolism , B7-H1 Antigen , Humans , Lung Neoplasms/drug therapy , Mice , Programmed Cell Death 1 Receptor , T-Lymphocytes , Lymphocyte Activation Gene 3 Protein
2.
Microb Cell Fact ; 17(1): 199, 2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30577801

ABSTRACT

BACKGROUND: The secretion of recombinant disulfide-bond containing proteins into the periplasm of Gram-negative bacterial hosts, such as E. coli, has many advantages that can facilitate product isolation, quality and activity. However, the secretion machinery of E. coli has a limited capacity and can become overloaded, leading to cytoplasmic retention of product; which can negatively impact cell viability and biomass accumulation. Fine control over recombinant gene expression offers the potential to avoid this overload by matching expression levels to the host secretion capacity. RESULTS: Here we report the application of the RiboTite gene expression control system to achieve this by finely controlling cellular expression levels. The level of control afforded by this system allows cell viability to be maintained, permitting production of high-quality, active product with enhanced volumetric titres. CONCLUSIONS: The methods and systems reported expand the tools available for the production of disulfide-bond containing proteins, including antibody fragments, in bacterial hosts.


Subject(s)
Gene Expression/genetics , Protein Transport/genetics , Recombinant Proteins/metabolism
3.
J Ind Microbiol Biotechnol ; 41(9): 1391-404, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25056840

ABSTRACT

Production of recombinant proteins is an industrially important technique in the biopharmaceutical sector. Many recombinant proteins are problematic to generate in a soluble form in bacteria as they readily form insoluble inclusion bodies. Recombinant protein solubility can be enhanced by minimising stress imposed on bacteria through decreasing growth temperature and the rate of recombinant protein production. In this study, we determined whether these stress-minimisation techniques can be successfully applied to industrially relevant high cell density Escherichia coli fermentations generating a recombinant protein prone to forming inclusion bodies, CheY-GFP. Flow cytometry was used as a routine technique to rapidly determine bacterial productivity and physiology at the single cell level, enabling determination of culture heterogeneity. We show that stress minimisation can be applied to high cell density fermentations (up to a dry cell weight of >70 g L(-1)) using semi-defined media and glucose or glycerol as carbon sources, and using early or late induction of recombinant protein production, to produce high yields (up to 6 g L(-1)) of aggregation-prone recombinant protein in a soluble form. These results clearly demonstrate that stress minimisation is a viable option for the optimisation of high cell density industrial fermentations for the production of high yields of difficult-to-produce recombinant proteins, and present a workflow for the application of stress-minimisation techniques in a variety of fermentation protocols.


Subject(s)
Batch Cell Culture Techniques/methods , Escherichia coli/growth & development , Escherichia coli/metabolism , Recombinant Fusion Proteins/biosynthesis , Escherichia coli/genetics , Fermentation , Glucose/metabolism , Inclusion Bodies/genetics , Inclusion Bodies/metabolism , Recombinant Fusion Proteins/genetics
4.
Biotechnol Lett ; 36(7): 1485-94, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24652548

ABSTRACT

Recombinant protein production in bacterial hosts is a commercially important process in the pharmaceutical industry. Optimisation of such processes is of critical importance for process productivity and reproducibility. Here, flow cytometry methods were developed to assess characteristics of bacteria during two process steps that are infrequently studied: agar plate culture and liquid culture set-up. During storage on agar plates, three discrete populations of varying green fluorescence intensity were observed along with a progressive shift of cells from the high green fluorescence population to an intermediate green fluorescence population, observed to be due formation of amyloid inclusion bodies. The dynamics of cellular fluorescence and scatter properties upon setup of liquid cultures were also assessed. These methods have the potential to improve the development of fermentation set-up, a currently little-understood area.


Subject(s)
Escherichia coli/chemistry , Escherichia coli/metabolism , Flow Cytometry/methods , Recombinant Proteins/metabolism , Agar , Escherichia coli/genetics , Escherichia coli/growth & development , Fluorescence , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Recombinant Proteins/genetics
5.
Biotechnol Lett ; 34(2): 175-86, 2012 Feb.
Article in English | MEDLINE | ID: mdl-21983972

ABSTRACT

The recent advances over the past 5 years in the utilisation of fluorescent proteins in microbial biotechnology applications, including recombinant protein production, food processing, and environmental biotechnology, are reviewed. We highlight possible areas where fluorescent proteins currently used in other bioscience disciplines could be adapted for use in biotechnological applications and also outline novel uses for recently developed fluorescent proteins.


Subject(s)
Biotechnology/methods , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Staining and Labeling/methods , Environmental Microbiology , Food Handling/methods , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...