Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 34(6)2021 Nov 22.
Article in English | MEDLINE | ID: mdl-34731853

ABSTRACT

The uniform states of a model for one-dimensional chains of thin magnetic islands on a nonmagnetic substrate coupled via dipolar interactions are described here. Magnetic islands oriented with their long axes perpendicular to the chain direction are assumed, whose shape anisotropy imposes a preference for the dipoles to point perpendicular to the chain. The competition between anisotropy and dipolar interactions leads to three types of uniform states of distinctly different symmetries, including metastable transverse or remanent states, transverse antiferromagnetic states, and longitudinal states where all dipoles align with the chain direction. The stability limits and normal modes of oscillation are found for all three types of states, even including infinite range dipole interactions. The normal mode frequencies are shown to be determined from the eigenvalues of the stability problem.

2.
Sci Rep ; 7(1): 13982, 2017 10 25.
Article in English | MEDLINE | ID: mdl-29070908

ABSTRACT

In this work, we have constructed and experimentally investigated frustrated arrays of dipoles forming two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal and vertical lattice spacings denoted by a and b respectively). Arrays with three different aspect ratios γ = a/b = [Formula: see text], [Formula: see text] and [Formula: see text] are studied. Theoretical calculations of low-energy demagnetized configurations for these same parameters are also presented. Experimental data for demagnetized samples confirm most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does not emerge in our theoretical model, while they are seen in experiments for large enough γ. Our results also insinuate that the string tension connecting two magnetic monopoles in a pair vanishes in rectangular lattices with a critical ratio γ = γ c = [Formula: see text], supporting previous theoretical predictions.

3.
J Phys Condens Matter ; 27(7): 076004, 2015 Feb 25.
Article in English | MEDLINE | ID: mdl-25640326

ABSTRACT

Thermodynamic properties of a spin ice model on a Kagomé lattice are obtained from dynamic simulations and compared with properties in square lattice spin ice. The model assumes three-component Heisenberg-like dipoles of an array of planar magnetic islands situated on a Kagomé lattice. Ising variables are avoided. The island dipoles interact via long-range dipolar interactions and are restricted in their motion due to local shape anisotropies. We define various order parameters and obtain them and thermodynamic properties from the dynamics of the system via a Langevin equation, solved by the Heun algorithm. Generally, a slow cooling from high to low temperature does not lead to a particular state of order, even for a set of coupling parameters that gives well thermalized states and dynamics. At very low temperature, however, square ice is more likely to reach states near the ground state than Kagomé ice, for the same island coupling parameters.

4.
J Phys Condens Matter ; 25(32): 325302, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23846610

ABSTRACT

The Faraday rotation in metallic nanoparticles is considered based on a quantum model for the dielectric function ϵ(ω) in the presence of a DC magnetic field B. We focus on effects in ϵ(ω) due to interband transitions (IBTs), which are important in the blue and ultraviolet for noble metals used in plasmonics. The dielectric function is found using the perturbation of the electron density matrix due to the optical field of the incident electromagnetic radiation. The calculation is applied to transitions between two bands (d and p, for example) separated by a gap, as one finds in gold at the L-point of the Fermi surface. The result of the DC magnetic field is a shift in the effective optical frequency causing IBTs by ±µBB/h, where opposite signs are associated with left/right circular polarizations. The Faraday rotation for a dilute solution of 17 nm diameter gold nanoparticles is measured and compared with both the IBT theory and a simpler Drude model for the bound electron response. Effects of the plasmon resonance mode on Faraday rotation in nanoparticles are also discussed.

5.
J Phys Condens Matter ; 24(29): 296001, 2012 Jul 25.
Article in English | MEDLINE | ID: mdl-22729157

ABSTRACT

The energetics of thin elongated ferromagnetic nano-islands is considered for some different shapes, aspect ratios and applied magnetic field directions. These nano-island particles are important for artificial spin ice materials. For low temperature, the magnetic internal energy of an individual particle is evaluated numerically as a function of the direction of a particle's net magnetization. This leads to estimations of effective anisotropy constants for (1) the easy axis along the particle's long direction, and (2) the hard axis along the particle's thin direction. A spin relaxation algorithm together with fast Fourier transform for the demagnetization field is used to solve the micromagnetics problem for a thin system. The magnetic hysteresis is also found. The results indicate some possibilities for controlling the equilibrium and dynamics in spin ice materials by using different island geometries.

6.
J Phys Condens Matter ; 22(37): 376002, 2010 Sep 22.
Article in English | MEDLINE | ID: mdl-21403210

ABSTRACT

Vortex states in thin circular magnetic nanodots are studied using auxiliary constraining fields as a way to map out the potential energy space of a vortex, while avoiding a rigid vortex approximation. In the model, isotropic Heisenberg exchange competes with the demagnetization field caused by both surface and volume magnetization charge densities. The system energy is minimized while applying a constraint on the vortex core position, using Lagrange's method of undetermined multipliers. The undetermined multiplier is seen to be the external field needed to hold the vortex core in place at a desired radial distance r from the dot center. This auxiliary field is applied only in the core region of the vortex. For a uniform nanodot, the potential energy is found to be very close to parabolic with r, as in the rigid vortex approximation, while the constraining field increases linearly with r. Effects of nonmagnetic impurities and holes in the medium can also be estimated. An impurity or hole in the dot can lead to bistable operation between the two minima that result under the application of a transverse applied magnetic field.


Subject(s)
Magnetics , Nanotechnology/instrumentation , Quantum Dots , Models, Theoretical , Nanoparticles/analysis , Quantum Theory
7.
Opt Lett ; 6(1): 30-2, 1981 Jan 01.
Article in English | MEDLINE | ID: mdl-19701316

ABSTRACT

We theoretically examine bistable operation in reflection with simultaneous excitation of the surface-plasmon mode at the interface with a nonlinear Kerr medium. Bistability may occur for an incident power an order of magnitude below that reported previously for a grazing-incidence geometry.

SELECTION OF CITATIONS
SEARCH DETAIL
...