Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 1710, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402227

ABSTRACT

An important challenge in active matter lies in harnessing useful global work from entities that produce work locally, e.g., via self-propulsion. We investigate here the active matter version of a classical capillary rise effect, by considering a non-phase separated sediment of self-propelled Janus colloids in contact with a vertical wall. We provide experimental evidence of an unexpected and dynamic adsorption layer at the wall. Additionally, we develop a complementary numerical model that recapitulates the experimental observations. We show that an adhesive and aligning wall enhances the pre-existing polarity heterogeneity within the bulk, enabling polar active particles to climb up a wall against gravity, effectively powering a global flux. Such steady-state flux has no equivalent in a passive wetting layer.

2.
Phys Rev E ; 109(1-1): 014616, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38366426

ABSTRACT

Recently it was predicted, on the basis of a lattice gas model, that scalar active matter in a gravitational field would rise against gravity up a confining wall or inside a thin capillary-in spite of repulsive particle-wall interactions [Phys. Rev. Lett. 124, 048001 (2020)0031-900710.1103/PhysRevLett.124.048001]. In this paper we confirm this prediction with sedimenting active Brownian particles (ABPs) in a box numerically and elucidate the mechanism leading to the formation of a meniscus rising above the bulk of the sedimentation region. The height of the meniscus increases with the activity of the system, algebraically with the Péclet number. The formation of the meniscus is determined by a stationary circular particle current, a vortex, centered at the base of the meniscus, whose size and strength increase with the ABP activity. The origin of these vortices can be traced back to the confinement of the ABPs in a box: already the stationary state of ideal (noninteracting) ABPs without gravitation displays circular currents that arrange in a highly symmetric way in the eight octants of the box. Gravitation distorts this vortex configuration downward, leaving two major vortices at the two side walls, with a strong downward flow along the walls. Repulsive interactions between the ABPs change this situation only as soon as motility induced phase separation (MIPS) sets in and forms a dense, sedimented liquid region at the bottom, which pushes the center of the vortex upwards towards the liquid-gas interface. Self-propelled particles therefore represent an impressive realization of scalar active matter that forms stationary particle currents being able to perform visible work against gravity or any other external field, which we predict to be observable experimentally in active colloids under gravitation.

3.
Phys Rev Lett ; 124(4): 048001, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32058737

ABSTRACT

We study the capacity of active matter to rise in thin tubes against gravity and other related phenomena like wetting of vertical plates and spontaneous imbibition, where a wetting liquid is drawn into a porous medium. This capillary action or capillarity is well known in classical fluids and originates from attractive interactions between the liquid molecules and the container walls, and from the attraction of the liquid molecules among each other. We observe capillarity in a minimal model for scalar active matter with purely repulsive interactions, where an effective attraction emerges due to slowdown during collisions between active particles and between active particles and walls. Simulations indicate that the capillary rise in thin tubes is approximately proportional to the active sedimentation length λ and that the wetting height of a vertical plate grows superlinear with λ. In a disordered porous medium the imbibition height scales as ⟨h⟩∝λϕ_{m}, where ϕ_{m} is its packing fraction. These predictions are highly relevant for suspensions of sedimenting active colloids or motile bacteria in a porous medium under the influence of a constant force field.

4.
Soft Matter ; 11(33): 6680-91, 2015 Sep 07.
Article in English | MEDLINE | ID: mdl-26221908

ABSTRACT

The pressure of suspensions of self-propelled objects is studied theoretically and by simulation of spherical active Brownian particles (ABPs). We show that for certain geometries, the mechanical pressure as force/area of confined systems can be equally expressed by bulk properties, which implies the existence of a nonequilibrium equation of state. Exploiting the virial theorem, we derive expressions for the pressure of ABPs confined by solid walls or exposed to periodic boundary conditions. In both cases, the pressure comprises three contributions: the ideal-gas pressure due to white-noise random forces, an activity-induced pressure ("swim pressure"), which can be expressed in terms of a product of the bare and a mean effective particle velocity, and the contribution by interparticle forces. We find that the pressure of spherical ABPs in confined systems explicitly depends on the presence of the confining walls and the particle-wall interactions, which has no correspondence in systems with periodic boundary conditions. Our simulations of three-dimensional ABPs in systems with periodic boundary conditions reveal a pressure-concentration dependence that becomes increasingly nonmonotonic with increasing activity. Above a critical activity and ABP concentration, a phase transition occurs, which is reflected in a rapid and steep change of the pressure. We present and discuss the pressure for various activities and analyse the contributions of the individual pressure components.


Subject(s)
Models, Chemical , Computer Simulation , Pressure
5.
Article in English | MEDLINE | ID: mdl-26066105

ABSTRACT

The effect of shape asymmetry of microswimmers on their adsorption capacity at confining channel walls is studied by a simple dumbbell model. For a shape polarity of a forward-swimming cone, like the stroke-averaged shape of a sperm, extremely long wall retention times are found, caused by a nonvanishing component of the propulsion force pointing steadily into the wall, which grows exponentially with the self-propulsion velocity and the shape asymmetry. A direct duality relation between shape asymmetry and wall curvature is proposed and verified. Our results are relevant for the design microswimmer with controlled wall-adhesion properties. In addition, we confirm that pressure in active systems is strongly sensitive to the details of the particle-wall interactions.


Subject(s)
Models, Biological , Movement , Adsorption , Animals , Cattle , Chlamydomonas/physiology , Male , Spermatozoa/physiology
6.
Sci Rep ; 5: 9586, 2015 May 20.
Article in English | MEDLINE | ID: mdl-25993019

ABSTRACT

Bacteria such as Escherichia coli swim along circular trajectories adjacent to surfaces. Thereby, the orientation (clockwise, counterclockwise) and the curvature depend on the surface properties. We employ mesoscale hydrodynamic simulations of a mechano-elastic model of E. coli, with a spherocylindrical body propelled by a bundle of rotating helical flagella, to study quantitatively the curvature of the appearing circular trajectories. We demonstrate that the cell is sensitive to nanoscale changes in the surface slip length. The results are employed to propose a novel approach to directing bacterial motion on striped surfaces with different slip lengths, which implies a transformation of the circular motion into a snaking motion along the stripe boundaries. The feasibility of this approach is demonstrated by a simulation of active Brownian rods, which also reveals a dependence of directional motion on the stripe width.


Subject(s)
Escherichia coli/physiology , Flagella/physiology , Hydrodynamics , Models, Biological , Movement , Surface Properties
7.
Article in English | MEDLINE | ID: mdl-25314571

ABSTRACT

We investigate the hydrodynamic properties of a spherical colloid model, which is composed of a shell of point particles by hybrid mesoscale simulations, which combine molecular dynamics simulations for the sphere with the multiparticle collision dynamics approach for the fluid. Results are presented for the center-of-mass and angular velocity correlation functions. The simulation results are compared with theoretical results for a rigid colloid obtained as a solution of the Stokes equation with no-slip boundary conditions. Similarly, analytical results of a point-particle model are presented, which account for the finite size of the simulated system. The simulation results agree well with both approaches on appropriative time scales; specifically, the long-time correlations are quantitatively reproduced. Moreover, a procedure is proposed to obtain the infinite-system-size diffusion coefficient based on a combination of simulation results and analytical predictions. In addition, we present the velocity field in the vicinity of the colloid and demonstrate its close agreement with the theoretical prediction. Our studies show that a point-particle model of a sphere is very well suited to describe the hydrodynamic properties of spherical colloids, with a significantly reduced numerical effort.


Subject(s)
Colloids , Hydrodynamics , Molecular Dynamics Simulation , Colloids/chemistry , Molecular Conformation
8.
Soft Matter ; 10(33): 6208-18, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25012361

ABSTRACT

A mesoscopic hydrodynamic model to simulate synthetic self-propelled Janus particles which is thermophoretically or diffusiophoretically driven is here developed. We first propose a model for a passive colloidal sphere which reproduces the correct rotational dynamics together with strong phoretic effect. This colloid solution model employs a multiparticle collision dynamics description of the solvent, and combines stick boundary conditions with colloid-solvent potential interactions. Asymmetric and specific colloidal surface is introduced to produce the properties of self-phoretic Janus particles. A comparative study of Janus and microdimer phoretic swimmers is performed in terms of their swimming velocities and induced flow behavior. Self-phoretic microdimers display long range hydrodynamic interactions with a decay of 1/r(2), which is similar to the decay of gradient fields generated by self-phoretic particle, and can be characterized as pullers or pushers. In contrast, Janus particles are characterized by short range hydrodynamic interactions with a decay of 1/r(3) and behave as neutral swimmers.

9.
Article in English | MEDLINE | ID: mdl-25019902

ABSTRACT

The glass transition is investigated in three dimensions for single and double Yukawa potentials for the full range of control parameters. For vanishing screening parameter, the limit of the one-component plasma is obtained; for large screening parameters and high coupling strengths, the glass-transition properties cross over to the hard-sphere system. Between the two limits, the entire transition diagram can be described by analytical functions. Unlike other potentials, the glass-transition and melting lines for Yukawa potentials are found to follow shifted but otherwise identical curves in control-parameter space.


Subject(s)
Models, Chemical , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Phase Transition , Static Electricity , Computer Simulation , Particle Size
10.
J Phys Condens Matter ; 23(28): 284117, 2011 Jul 20.
Article in English | MEDLINE | ID: mdl-21709336

ABSTRACT

The collective dynamics in a binary mixture of colloidal particles which are driven in opposite directions by an external oscillatory field is examined by computer simulations in two spatial dimensions. Both Brownian dynamics (BD) computer simulations, which ignore solvent-mediated hydrodynamic interactions between the colloidal particles, and multi-particle collision dynamics (MPCD) simulations, which include hydrodynamic interactions, are employed. We first review recent results obtained by BD. Depending on the driving frequency and amplitude, lane formation parallel to the drive and band formation perpendicular to the drive occur. Band formation is stable only in a finite window of oscillation frequencies and driving strengths and is taken over by lane formation if the driving force is increased or the oscillation frequency is decreased. MPCD simulations, on the other hand, reveal that band formation is blurred by hydrodynamic interactions. During the front collisions of oppositely driven particles there is a strong vortical movement of the solvent which tends to mix particles and broaden the interface of the bands. This can either lead to a novel intermittent dynamical behaviour or to band rupture into local clusters. These effects, which are absent for BD, are characterized by the strengths of the enstrophy and its spectrum. We finally discuss possible experimental realizations of the models employed.


Subject(s)
Colloids/chemistry , Hydrodynamics , Computer Simulation , Models, Chemical
11.
Faraday Discuss ; 144: 245-52; discussion 323-45, 467-81, 2010.
Article in English | MEDLINE | ID: mdl-20158032

ABSTRACT

The sedimentation of an initially inhomogeneous distribution of hard-sphere colloids confined in a slit is simulated using the multi-particle collision dynamics scheme which takes into account hydrodynamic interactions mediated by the solvent. This system is an example for soft matter driven out of equilibrium where various length and time scales are involved. The initial laterally homogeneous density profiles exhibit a hydrodynamic Rayleigh-Taylor-like instability. Solvent backflow effects lead to an intricate non-linear behaviour which is analyzed via the solvent flow field and the colloidal velocity correlation function. Our simulation data are in good agreement with real-space microscopy experiments.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 79(4 Pt 1): 041408, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19518234

ABSTRACT

Using Brownian dynamics computer simulations we show that binary mixtures of colloids driven in opposite directions by an oscillating external field exhibit axial segregation in sheets perpendicular to the drive direction. The segregation effect is stable only in a finite window of oscillation frequencies and driving strengths and is taken over by lane formation in the direction of the driving field if the driving force is increased or the oscillation frequency is decreased. In the crossover regime, bands tilted relative to the drive direction are observed. Possible experiments to verify the axial segregation are discussed.

13.
Rocz Panstw Zakl Hig ; 53(1): 33-45, 2002.
Article in Polish | MEDLINE | ID: mdl-12053482

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants. They are found through environment in the air, in the soil, in water, in plants, and also in food. PAHs are formed during pyrolisis and the incomplete combustion of organic materials. PAHs can be man-made or occur naturally. They undergo metabolic activation after entering the mammalian cells to highly toxic reactive metabolite intermediates and can irreversibly damage cellular macromolecules (DNA, proteins, lipids). Polycyclic aromatic hydrocarbons represent a class of toxicological compounds which can create a variety of hazardous effects in vivo, including cytotoxicity, genotoxicity, immunotoxicity, teratogenicity and carcinogenesis described in present paper.


Subject(s)
Environmental Pollutants/adverse effects , Polycyclic Aromatic Hydrocarbons/adverse effects , Animals , Humans , Occupational Exposure
SELECTION OF CITATIONS
SEARCH DETAIL
...