Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 25.
Article in English | MEDLINE | ID: mdl-38891947

ABSTRACT

Esterquats constitute a unique group of quaternary ammonium salts (QASs) that contain an ester bond in the structure of the cation. Despite the numerous advantages of this class of compounds, only two mini-reviews discuss the subject of esterquats: the first one (2007) briefly summarizes their types, synthesis, and structural elements required for a beneficial environmental profile and only briefly covers their applications whereas the second one only reviews the stability of selected betaine-type esterquats in aqueous solutions. The rationale for writing this review is to critically reevaluate the relevant literature and provide others with a "state-of-the-art" snapshot of choline-type esterquats and betaine-type esterquats. Hence, the first part of this survey thoroughly summarizes the most important scientific reports demonstrating effective synthesis routes leading to the formation of both types of esterquats. In the second section, the susceptibility of esterquats to hydrolysis is explained, and the influence of various factors, such as the pH, the degree of salinity, or the temperature of the solution, was subjected to thorough analysis that includes quantitative components. The next two sections refer to various aspects associated with the ecotoxicity of esterquats. Consequently, their biodegradation and toxic effects on microorganisms are extensively analyzed as crucial factors that can affect their commercialization. Then, the reported applications of esterquats are briefly discussed, including the functionalization of macromolecules, such as cotton fabric as well as their successful utilization on a commercial scale. The last section demonstrates the most essential conclusions and reported drawbacks that allow us to elucidate future recommendations regarding the development of these promising chemicals.


Subject(s)
Betaine , Cations , Choline , Betaine/chemistry , Betaine/analogs & derivatives , Choline/chemistry , Choline/analogs & derivatives , Cations/chemistry , Esters/chemistry , Quaternary Ammonium Compounds/chemistry , Humans
2.
Nanomaterials (Basel) ; 13(14)2023 Jul 22.
Article in English | MEDLINE | ID: mdl-37513141

ABSTRACT

In the XXI century, application of nanostructures in oral medicine has become common. In oral medicine, using nanostructures for the treatment of dental caries constitutes a great challenge. There are extensive studies on the implementation of nanomaterials to dental composites in order to improve their properties, e.g., their adhesive strength. Moreover, nanostructures are helpful in dental implant applications as well as in maxillofacial surgery for accelerated healing, promoting osseointegration, and others. Dental personal care products are an important part of oral medicine where nanomaterials are increasingly used, e.g., toothpaste for hypersensitivity. Nowadays, nanoparticles such as macrocycles are used in different formulations for early cancer diagnosis in the oral area. Cancer of the oral cavity-human squamous carcinoma-is the sixth leading cause of death. Detection in the early stage offers the best chance at total cure. Along with diagnosis, macrocycles are used for photodynamic mechanism-based treatments, which possess many advantages, such as protecting healthy tissues and producing good cosmetic results. Application of nanostructures in medicine carries potential risks, like long-term influence of toxicity on body, which need to be studied further. The introduction and development of nanotechnologies and nanomaterials are no longer part of a hypothetical future, but an increasingly important element of today's medicine.

3.
ChemMedChem ; 17(13): e202200185, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35507015

ABSTRACT

Photodynamic and sonodynamic therapy are therapies having great potential in the treatment of bacterial infections and cancer. Their background is associated with photo- and sonosensitizers - substances that can be excited when exposed to light or ultrasound. These sensitizers belong to a various groups of compound, including porphyrins, porphyrazines, and phthalocyanines. Releasing the energy when returning to the ground state can occur in the manner of transferring it to oxygen molecules, leading to reactive oxygen species able to disrupt membranes of bacterial and cancer cells, leaving the organism's cells unaffected. In recent years, the number of reports on numerous sensitizers being effective has been constantly growing. Therefore, the development of this field may prove beneficial for dealing with cancer and microbes. This review describes the development of photodynamic and sonodynamic therapy, as well as their combination, with emphasis on sonodynamic therapy and its potential in the treatment of cancer and bacterial infections.


Subject(s)
Neoplasms , Photochemotherapy , Porphyrins , Humans , Indoles , Neoplasms/drug therapy , Porphyrins/pharmacology , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...