Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 9(417)2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29167394

ABSTRACT

Sporadic Creutzfeldt-Jakob disease (sCJD), the most common human prion disease, is transmissible through iatrogenic routes due to abundant infectious prions [misfolded forms of the prion protein (PrPSc)] in the central nervous system (CNS). Some epidemiological studies have associated sCJD risk with non-CNS surgeries. We explored the potential prion seeding activity and infectivity of skin from sCJD patients. Autopsy or biopsy skin samples from 38 patients [21 sCJD, 2 variant CJD (vCJD), and 15 non-CJD] were analyzed by Western blotting and real-time quaking-induced conversion (RT-QuIC) for PrPSc Skin samples from two patients were further examined for prion infectivity by bioassay using two lines of humanized transgenic mice. Western blotting revealed dermal PrPSc in one of five deceased sCJD patients and one of two vCJD patients. However, the more sensitive RT-QuIC assay detected prion seeding activity in skin from all 23 CJD decedents but not in skin from any non-CJD control individuals (with other neurological conditions or other diseases) during blinded testing. Although sCJD patient skin contained ~103- to 105-fold lower prion seeding activity than did sCJD patient brain tissue, all 12 mice from two transgenic mouse lines inoculated with sCJD skin homogenates from two sCJD patients succumbed to prion disease within 564 days after inoculation. Our study demonstrates that the skin of sCJD patients contains both prion seeding activity and infectivity, which raises concerns about the potential for iatrogenic sCJD transmission via skin.


Subject(s)
Creutzfeldt-Jakob Syndrome/pathology , Prions/pathogenicity , Skin/pathology , Aged , Animals , Biological Assay , Brain/pathology , Disease Models, Animal , Female , Humans , In Vitro Techniques , Male , Mice, Transgenic , Middle Aged , Prion Diseases/pathology
3.
PLoS One ; 10(9): e0136923, 2015.
Article in English | MEDLINE | ID: mdl-26327228

ABSTRACT

The cellular prion protein (PrPC), a protein most noted for its link to prion diseases, has been found to play a protective role in ischemic brain injury. To investigate the role of PrPC in the kidney, an organ highly prone to ischemia/reperfusion (IR) injury, we examined wild-type (WT) and PrPC knockout (KO) mice that were subjected to 30-min of renal ischemia followed by 1, 2, or 3 days of reperfusion. Renal dysfunction and structural damage was more severe in KO than in WT mice. While PrP was undetectable in KO kidneys, Western blotting revealed an increase in PrP in IR-injured WT kidneys compared to sham-treated kidneys. Compared to WT, KO kidneys exhibited increases in oxidative stress markers heme oxygenase-1, nitrotyrosine, and Nε-(carboxymethyl)lysine, and decreases in mitochondrial complexes I and III. Notably, phosphorylated extracellular signal-regulated kinase (pERK) staining was predominantly observed in tubular cells from KO mice following 2 days of reperfusion, a time at which significant differences in renal dysfunction, histological changes, oxidative stress, and mitochondrial complexes between WT and KO mice were observed. Our study provides the first evidence that PrPC may play a protective role in renal IR injury, likely through its effects on mitochondria and ERK signaling pathways.


Subject(s)
Kidney/metabolism , Prions/metabolism , Reperfusion Injury/metabolism , Animals , Extracellular Signal-Regulated MAP Kinases/metabolism , Heme Oxygenase-1/metabolism , Kidney Diseases/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Oxidative Stress/physiology , Tyrosine/analogs & derivatives , Tyrosine/metabolism
4.
Am J Pathol ; 174(5): 1602-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19349373

ABSTRACT

The vertical transmission of a prion disease from infected mothers to their offspring is believed to be one of the routes for the natural spread of animal prion diseases. Supporting this notion is the observation that prion infectivity occurs in the placenta of infected ewes. Furthermore, the prion protein (PrP), both in its cellular form (PrP(C)) and its pathological isoform (PrP(Sc)), has been observed at the fetal-maternal interface of scrapie-infected sheep. However, whether these features of prion infectivity also hold true for human prion diseases is currently unknown. To begin to address such an important question, we examined PrP in the uterus as well as gestational tissues, including the placenta and amniotic fluid, in a pregnant woman with sporadic Creutzfeldt-Jakob disease (CJD). Although the proteinase K (PK)-resistant prion protein, PrP27-30, was present in the brain tissues of the mother, the PrP detected in the uterus, placenta, and amniotic fluid was sensitive to PK digestion. Unlike PrP(C) in the brain and adjacent cerebrospinal fluid, the predominant PrP species in the reproductive and gestational tissues were N-terminally truncated, similar to urine PrP. Our study did not detect abnormal PrP in the reproductive and gestational tissues in this case of CJD. Nevertheless, examination by a highly sensitive bioassay is ongoing to ascertain possible prion infectivity from CJD in the amniotic fluid.


Subject(s)
Amniotic Fluid/metabolism , Creutzfeldt-Jakob Syndrome/metabolism , Placenta/metabolism , PrPSc Proteins/metabolism , Uterus/metabolism , Adult , Autopsy , Biopsy , Blotting, Western , Brain/metabolism , Creutzfeldt-Jakob Syndrome/pathology , Endopeptidase K/pharmacology , Female , Humans , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...