Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 475
Filter
1.
Neural Netw ; 179: 106531, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39029296

ABSTRACT

As an effective strategy for reducing the noisy and redundant information for hyperspectral imagery (HSI), hyperspectral band selection intends to select a subset of original hyperspectral bands, which boosts the subsequent different tasks. In this paper, we introduce a multi-dimensional high-order structure preserved clustering method for hyperspectral band selection, referred to as MHSPC briefly. By regarding original hyperspectral images as a tensor cube, we apply the tensor CP (CANDECOMP/PARAFAC) decomposition on it to exploit the multi-dimensional structural information as well as generate a low-dimensional latent feature representation. In order to capture the local geometrical structure along the spectral dimension, a graph regularizer is imposed on the new feature representation in the lower dimensional space. In addition, since the low rankness of HSIs is an important global property, we utilize a nuclear norm constraint on the latent feature representation matrix to capture the global data structure information. Different to most of previous clustering based hyperspectral band selection methods which vectorize each band as a vector without considering the 2-D spatial information, the proposed MHSPC can effectively capture the spatial structure as well as the spectral correlation of original hyperspectral cube in both local and global perspectives. An efficient alternatively updating algorithm with theoretical convergence guarantee is designed to solve the resultant optimization problem, and extensive experimental results on four benchmark datasets validate the effectiveness of the proposed MHSPC over other state-of-the-arts.

2.
Am J Transl Res ; 16(5): 1977-1990, 2024.
Article in English | MEDLINE | ID: mdl-38883375

ABSTRACT

BACKGROUND: F-box and leucine-rich repeat protein 18 (FBXL18) is an F-box protein that functions as an E3-ubiquitin ligase, and it plays pivotal roles in multiple disease processes. However, its role and underlying mechanism in ovarian cancer (OC) are still unknown. We investigated the impact and mechanism of FBXL18 in OC cell growth and tumorigenesis. METHODS: Silent interfering RNAs and overexpression plasmids were employed to knock down and overexpress FBXL18 in OC cells (A2780 and OVCAR3). CCK-8, colony formation, cell migration, and nude mouse xenograft assays were used to assess the effect of FBXL18 on OC cell proliferation and migration. Western blotting and co-immunoprecipitation followed by ubiquitination assays were performed to detect the mechanism of the FBXL18/AKT axis in OC. RESULTS: FBXL18 knockdown inhibited OC cell proliferation and migration, whereas FBXL18 overexpression showed the opposite results. Phosphorylated-AKT (S473) protein expression was increased by FBXL18 overexpression and markedly decreased after phosphorylated-AKT inhibitor (MK-2206) treatment. Co-immunoprecipitation assays demonstrated that FBXL18 strongly interacted with AKT in OC cells. Ubiquitination assays revealed that FBXL18 promoted K63-linked AKT ubiquitination to activate AKT. MK-2206 treatment reversed the increase in proliferation and migration of OC cells induced by FBXL18 overexpression. CONCLUSIONS: FBXL18 promoted OC cell proliferation and migration and facilitated OC tumorigenesis. Mechanically, FBXL18 interacted with AKT and promoted K63-linked ubiquitination of AKT to activate AKT in OC cells. Our study revealed that the FBXL18/AKT axis plays a crucial role in the OC process, indicating that FBXL18 may be a valuable target for OC diagnosis and treatment.

3.
Int J Biol Macromol ; 274(Pt 1): 133105, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876240

ABSTRACT

To effectively utilize the photodynamic antibacterial ability of vitamin K3 (VK3), by solving the photothermal instability of VK3, it was combined with natural polymers to apply the preservation of chilled mutton. We encapsulated VK3 in the (2-Hydroxypropyl)-ß-cyclodextrin (HP-ß-CD) to construct VK3-HP-ß-CD complex and then introduced the complex to chitosan (CS) and polyvinyl alcohol (PVA) to fabricate an antibacterial film (CS/PVA-VK3-HP-ß-CD film). Through the packaging performance test of the film, the content of VK3-HP-ß-CD was an important factor determining the properties of film including tensile strength, elongation at break, water vapor permeability, water content and water contact angle. Meanwhile, CS/PVA-VK3-HP-ß-CD films could continuously release ROS under light and suspended in dark, thus realizing >99 % antibacterial rate for Escherichia coli and Staphylococcus aureus. In the application experiment of chilled mutton, CS/PVA-VK3-1-HP-ß-CD film could significantly inhibit the increase of total viable count (TVC), pH value (pH) and total volatile base nitrogen (TVB-N) of chilled mutton, and extended its shelf life for at least 12 days. These results indicated that the CS/PVA film with the VK3-HP-ß-CD complex might have promising potential as an antibacterial material for packaging and preserving food.

4.
Nat Comput Sci ; 4(6): 429-439, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38877122

ABSTRACT

Neural networks find widespread use in scientific and technological applications, yet their implementations in conventional computers have encountered bottlenecks due to ever-expanding computational needs. Photonic computing is a promising neuromorphic platform with potential advantages of massive parallelism, ultralow latency and reduced energy consumption but mostly for computing linear operations. Here we demonstrate a large-scale, high-performance nonlinear photonic neural system based on a disordered polycrystalline slab composed of lithium niobate nanocrystals. Mediated by random quasi-phase-matching and multiple scattering, linear and nonlinear optical speckle features are generated as the interplay between the simultaneous linear random scattering and the second-harmonic generation, defining a complex neural network in which the second-order nonlinearity acts as internal nonlinear activation functions. Benchmarked against linear random projection, such nonlinear mapping embedded with rich physical computational operations shows improved performance across a large collection of machine learning tasks in image classification, regression and graph classification. Demonstrating up to 27,648 input and 3,500 nonlinear output nodes, the combination of optical nonlinearity and random scattering serves as a scalable computing engine for diverse applications.

5.
Anim Nutr ; 17: 325-334, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38800742

ABSTRACT

This study sought to determine the effects of rosemary leaf powder (RP) on laying performance, egg quality, serum indices, gut barrier function, and cecal microbiota and metabolites of late-phase laying hens. A total of 84 "Jing Tint 6" laying hens at 65-week old were randomly divided into 2 groups and fed either a basal diet (CON) or a basal diet supplemented with 0.3% RP. Our study revealed that RP improved the Haugh unit and decreased yolk n-6/n-3 polyunsaturated fatty acid (PUFA) ratio of laying hens, increased serum superoxide dismutase (SOD), jejunal activities of SOD and catalase (CAT), and jejunal zonula occludens-1 (ZO-1) expression, as well as decreased serum tumor necrosis factor-α (TNF-α) level and jejunal TNF-α mRNA expression. Rosemary leaf powder markedly enhanced (P < 0.05) cecal abundances of Rikenellaceae, Rikenellaceae_RC9_gut_group, and Turicibacter, tended to promote (P = 0.076) butyrate concentration, and reduced (P < 0.05) cecal abundances of Erysipelatoclostridiaceae, Sutterellaceae, Fusobacteriaceae, Campylobacteraceae, Sutterella, Campylobacter, and Fusobacterium, which were closely linked with Haugh unit, yolk n-6/n-3 PUFA ratio, serum SOD and TNF-α. In addition, RP altered the metabolic functions of cecal microbiota and enhanced the abundances of butyrate-synthesizing enzymes, including lysine 2,3-aminomutase, ß-lysine 5,6-aminomutase, and 3-oxoacid CoA-transferase. Together, 0.3% RP has the potential to enhance egg quality by partially modulating serum antioxidant status, jejunal barrier function, and cecal microbiota structure and metabolites, indicating that RP could be considered a promising feed additive to promote the production performance of late-phase laying hens.

6.
Int J Ophthalmol ; 17(3): 485-490, 2024.
Article in English | MEDLINE | ID: mdl-38721517

ABSTRACT

AIM: To investigate the long-term changes of corneal densitometry (CD) and its contributing elements after small incision lenticule extraction (SMILE). METHODS: Totally 31 eyes of 31 patients with mean spherical equivalent of -6.46±1.50 D and mean age 28.23±7.38y were enrolled. Full-scale examinations were conducted on all patients preoperatively and during follow-up. Visual acuity, manifest refraction, axial length, corneal thickness, corneal higher-order aberrations, and CD were evaluated. RESULTS: All surgeries were completed successfully without complications or adverse events. Ten-year safety index was 1.17±0.20 and efficacy 1.04±0.28. CD value of 0-6 mm zones in central layer was statistically significantly lower 10y postoperatively, compared with preoperative values (0-2 mmΔ=-1.62, 2-6 mmΔ=-1.24, P<0.01). There were no correlations between CD values and factors evaluated. CONCLUSION: SMILE is a safe and efficient procedure for myopia on a long-term basis. CD values get lower 10y postoperatively, whose mechanism is to be further discussed.

7.
Immunol Res ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38722530

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial hyperplasia, pannus formation, and cartilage and bone destruction. Lysine-specific demethylase 1 (LSD1), an enzyme involved in transcriptional regulation, has an unclear role in synovial inflammation, fibroblast-like synoviocytes migration, and invasion during RA pathogenesis. In this study, we observed increased LSD1 expression in RA synovial tissues and in TNF-α-stimulated MH7A cells. SP2509, an LSD1 antagonist, directly reduced LSD1 expression and reversed the elevated levels of proteins associated with inflammation, apoptosis, proliferation, and autophagy induced by TNF-α. Furthermore, SP2509 inhibited the migratory capacity of MH7A cells, which was enhanced by TNF-α. In CIA models, SP2509 treatment ameliorated RA development, reducing the expression of pro-inflammatory cytokines and alleviating joint pathological symptoms. These findings underscore the significance of LSD1 in RA and propose the therapeutic potential of SP2509.

8.
Phytomedicine ; 129: 155657, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692076

ABSTRACT

BACKGROUND: The pentose phosphate pathway (PPP) plays a crucial role in the material and energy metabolism in cancer cells. Targeting 6-phosphogluconate dehydrogenase (6PGD), the rate-limiting enzyme in the PPP metabolic process, to inhibit cellular metabolism is an effective anticancer strategy. In our previous study, we have preliminarily demonstrated that gambogic acid (GA) induced cancer cell death by inhibiting 6PGD and suppressing PPP at the cellular level. However, it is unclear whether GA could suppress cancer cell growth by inhibiting PPP pathway in mouse model. PURPOSE: This study aimed to confirm that GA as a covalent inhibitor of 6PGD protein and to validate that GA suppresses cancer cell growth by inhibiting the PPP pathway in a mouse model. METHODS: Cell viability was detected by CCK-8 assays as well as flow cytometry. The protein targets of GA were identified using a chemical probe and activity-based protein profiling (ABPP) technology. The target validation was performed by in-gel fluorescence assay, the Cellular Thermal Shift Assay (CETSA). A lung cancer mouse model was constructed to test the anticancer activity of GA. RNA sequencing was performed to analyze the global effect of GA on gene expression. RESULTS: The chemical probe of GA exhibited high biological activity in vitro. 6PGD was identified as one of the binding proteins of GA by ABPP. Our findings revealed a direct interaction between GA and 6PGD. We also found that the anti-cancer activity of GA depended on reactive oxygen species (ROS), as evidenced by experiments on cells with 6PGD knocked down. More importantly, GA could effectively reduce the production of the two major metabolites of the PPP in lung tissue and inhibit cancer cell growth in the mouse model. Finally, RNA sequencing data suggested that GA treatment significantly regulated apoptosis and hypoxia-related physiological processes. CONCLUSION: These results demonstrated that GA was a covalent inhibitor of 6PGD protein. GA effectively suppressed cancer cell growth by inhibiting the PPP pathway without causing significant side effects in the mouse model. Our study provides in vivo evidence that elucidates the anticancer mechanism of GA, which involves the inhibition of 6PGD and modulation of cellular metabolic processes.


Subject(s)
Lung Neoplasms , Pentose Phosphate Pathway , Xanthones , Xanthones/pharmacology , Animals , Pentose Phosphate Pathway/drug effects , Lung Neoplasms/drug therapy , Mice , Humans , Phosphogluconate Dehydrogenase/metabolism , Cell Line, Tumor , Antineoplastic Agents, Phytogenic/pharmacology , Cell Survival/drug effects , Disease Models, Animal
9.
Compr Rev Food Sci Food Saf ; 23(3): e13340, 2024 May.
Article in English | MEDLINE | ID: mdl-38778570

ABSTRACT

Immunoglobulin E (IgE)-mediated food allergy is a rapidly growing public health problem. The interaction between allergens and IgE is at the core of the allergic response. One of the best ways to understand this interaction is through structural characterization. This review focuses on animal-derived food allergens, overviews allergen structures determined by X-ray crystallography, presents an update on IgE conformational epitopes, and explores the structural features of these epitopes. The structural determinants of allergenicity and cross-reactivity are also discussed. Animal-derived food allergens are classified into limited protein families according to structural features, with the calcium-binding protein and actin-binding protein families dominating. Progress in epitope characterization has provided useful information on the structural properties of the IgE recognition region. The data reveals that epitopes are located in relatively protruding areas with negative surface electrostatic potential. Ligand binding and disulfide bonds are two intrinsic characteristics that influence protein structure and impact allergenicity. Shared structures, local motifs, and shared epitopes are factors that lead to cross-reactivity. The structural properties of epitope regions and structural determinants of allergenicity and cross-reactivity may provide directions for the prevention, diagnosis, and treatment of food allergies. Experimentally determined structure, especially that of antigen-antibody complexes, remains limited, and the identification of epitopes continues to be a bottleneck in the study of animal-derived food allergens. A combination of traditional immunological techniques and emerging bioinformatics technology will revolutionize how protein interactions are characterized.


Subject(s)
Allergens , Epitopes , Food Hypersensitivity , Immunoglobulin E , Allergens/chemistry , Allergens/immunology , Food Hypersensitivity/immunology , Epitopes/chemistry , Epitopes/immunology , Animals , Crystallography, X-Ray , Humans , Immunoglobulin E/immunology , Immunoglobulin E/chemistry , Cross Reactions , Protein Conformation
10.
J Adv Res ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38821357

ABSTRACT

Aging and aging-associated diseases (AAD), including neurodegenerative disease, cancer, cardiovascular diseases, and diabetes, are inevitable process. With the gradual improvement of life style, life expectancy is gradually extended. However, the extended lifespan has not reduced the incidence of disease, and most elderly people are in ill-health state in their later years. Hence, understanding aging and AAD are significant for reducing the burden of the elderly. Inorganic metal nanoparticles (IMNPs) predominantly include gold, silver, iron, zinc, titanium, thallium, platinum, cerium, copper NPs, which has been widely used to prevent and treat aging and AAD due to their superior properties (essential metal ions for human body, easily synthesis and modification, magnetism). Therefore, a systematic review of common morphological alternations of senescent cells, altered genes and signal pathways in aging and AAD, and biomedical applications of IMNPs in aging and AAD is crucial for the further research and development of IMNPs in aging and AAD. This review focus on the existing research on cellular senescence, aging and AAD, as well as the applications of IMNPs in aging and AAD in the past decade. This review aims to provide cutting-edge knowledge involved with aging and AAD, the application of IMNPs in aging and AAD to promote the biomedical application of IMNPs in aging and AAD.

11.
J Agric Food Chem ; 72(23): 13402-13414, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38821040

ABSTRACT

Scy p 8 (triosephosphate isomerase) as a crab allergen in inducing distinct T-helper (Th) cell differentiation and a linear epitope associated with allergenicity remain elusive. In this study, mice sensitized with Scy p 8 exhibited significantly upregulated levels of IgE, IgG1, and IL-4 release, inducing a Th2 immune response. Moreover, the release of IFN-γ (Th1) and the levels of Treg cells were downregulated, while IL-17A (Th17) was upregulated, indicating that Scy p 8 disrupted the Th1/Th2 balance and Th17/Treg balance in mice. Furthermore, bioinformatics prediction and serum samples from crab-allergic patients and mice enabled the discovery of 8 linear epitopes of Scy p 8. Meanwhile, the analysis of peptide similarity and tertiary superposition revealed that 8 epitopes of Scy p 8 exhibited conservation across various species, potentially resulting in cross-reactivity. These findings possess the potential to enhance the comprehension of crab allergens, thereby establishing a foundation for investigating cross-reactivity.


Subject(s)
Allergens , Brachyura , Epitopes , Mice, Inbred BALB C , Animals , Brachyura/immunology , Brachyura/genetics , Brachyura/chemistry , Allergens/immunology , Allergens/chemistry , Allergens/genetics , Humans , Epitopes/immunology , Epitopes/chemistry , Mice , Female , Shellfish Hypersensitivity/immunology , Immunoglobulin E/immunology , Arthropod Proteins/immunology , Arthropod Proteins/genetics , Arthropod Proteins/chemistry , Immunoglobulin G/immunology , Immunoglobulin G/blood , Th2 Cells/immunology , Cross Reactions , Male , Interleukin-4/immunology , Interleukin-4/genetics , Adult , Th1 Cells/immunology , Interferon-gamma/immunology , Interferon-gamma/genetics
12.
Neurophotonics ; 11(Suppl 1): S11510, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38617592

ABSTRACT

The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.

13.
ArXiv ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38562443

ABSTRACT

The intricate nature of the brain necessitates the application of advanced probing techniques to comprehensively study and understand its working mechanisms. Neurophotonics offers minimally invasive methods to probe the brain using optics at cellular and even molecular levels. However, multiple challenges persist, especially concerning imaging depth, field of view, speed, and biocompatibility. A major hindrance to solving these challenges in optics is the scattering nature of the brain. This perspective highlights the potential of complex media optics, a specialized area of study focused on light propagation in materials with intricate heterogeneous optical properties, in advancing and improving neuronal readouts for structural imaging and optical recordings of neuronal activity. Key strategies include wavefront shaping techniques and computational imaging and sensing techniques that exploit scattering properties for enhanced performance. We discuss the potential merger of the two fields as well as potential challenges and perspectives toward longer term in vivo applications.

14.
J Med Chem ; 67(9): 7283-7300, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38676656

ABSTRACT

The epidermal growth factor receptor (EGFR) tertiary C797S mutation is an important cause of resistance to Osimertinib, which seriously hinders the clinical application of Osimertinib. Developing proteolysis-targeting chimeras (PROTACs) targeting EGFR mutants can offer a promising strategy to overcome drug resistance. In this study, some novel PROTACs targeting C797S mutation were designed and synthesized based on a new EGFR inhibitor and displayed a potent degradation effect in H1975-TM cells harboring EGFRL858R/T790M/C797S. The representative compound C6 exhibited a DC50 of 10.2 nM against EGFRL858R/T790M/C797S and an IC50 of 10.3 nM against H1975-TM. Furthermore, C6 also showed potent degradation activity against various main EGFR mutants, including EGFRDel19/T790M/C797S. Mechanistic studies revealed that the protein degradation was achieved through the ubiquitin-proteasome system. Finally, C6 inhibited tumor growth in the H1975-TM xenograft tumor model effectively and safely. This study identifies a novel and potent EGFR PROTAC to overcome Osimertinib resistance mediated by C797S mutation.


Subject(s)
Antineoplastic Agents , Drug Design , ErbB Receptors , Mutation , Protein Kinase Inhibitors , Proteolysis , ErbB Receptors/metabolism , ErbB Receptors/genetics , ErbB Receptors/antagonists & inhibitors , Humans , Animals , Proteolysis/drug effects , Cell Line, Tumor , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Mice , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Mice, Nude , Acrylamides/pharmacology , Acrylamides/chemical synthesis , Acrylamides/chemistry , Drug Resistance, Neoplasm/drug effects , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/genetics , Aniline Compounds/pharmacology , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Mice, Inbred BALB C , Structure-Activity Relationship , Proteolysis Targeting Chimera , Indoles , Pyrimidines
15.
J Assist Reprod Genet ; 41(6): 1597-1603, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38613651

ABSTRACT

PURPOSE: Zygotes with 2.1 pronuclei (2.1PN) present with two normal-sized pronuclei, and an additional smaller pronucleus, that is approximately smaller than two thirds the size of a normal pronucleus. It remains unclear whether the additional pronucleus causes embryonic chromosome abnormalities. In the majority of cases, in vitro fertilization (IVF) clinics discarded 2.1PN zygotes. Thus, the present study aimed to evaluate the developmental potential and value of 2.1PN zygotes. METHODS: 2.1PN-derived embryos from 164 patients who underwent IVF or intracytoplasmic sperm injection (ICSI) treatment between January 2021 and December 2022 were included in the present study. All embryos were monitored using a time-lapse system, and blastocyst formation was used to assess 2.1PN-derived embryo developmental potential. The blastocyst formation was quantified using generalized estimating equations, and chromosome euploidy was analyzed using next-generation sequencing (NGS). In addition, the potential association between age and occurrence of 2.1PN zygotes was determined. RESULTS: The present study demonstrated that numerous 2.1PN zygotes developed into blastocysts. Early cleavage patterns and embryo quality on Day 3 were the independent predictors for the blastocyst formation of 2.1PN-derived embryos. The 2.1PN zygotes displayed a comparable developmental potential compared to 2PN zygotes in advanced age patients (≥ 38). Moreover, there was a tendency that 2.1PN-derived blastocysts showed a similar euploidy rate compared to 2PN-derived blastocysts. CONCLUSION: Clinicians should consider using 2.1PN-derived euploid embryos for transfer after preimplantation genetic testing in the absence of available 2PN embryo cycles. 2.1PN-derived embryos could be a candidate, particularly beneficial for patients at advanced age.


Subject(s)
Blastocyst , Embryonic Development , Fertilization in Vitro , Preimplantation Diagnosis , Sperm Injections, Intracytoplasmic , Zygote , Humans , Female , Embryonic Development/genetics , Adult , Blastocyst/cytology , Blastocyst/metabolism , Pregnancy , Fertilization in Vitro/methods , Preimplantation Diagnosis/methods , Zygote/growth & development , Sperm Injections, Intracytoplasmic/methods , Embryo Transfer/methods , Chromosome Aberrations , Male , Pregnancy Rate
16.
Adv Sci (Weinh) ; 11(23): e2310263, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38647431

ABSTRACT

Metal halide perovskites (MHPs) are considered as promising candidates in the application of nonvolatile high-density, low-cost resistive switching (RS) memories and artificial synapses, resulting from their excellent electronic and optoelectronic properties including large light absorption coefficient, fast ion migration, long carrier diffusion length, low trap density, high defect tolerance. Among MHPs, 2D halide perovskites have exotic layered structure and great environment stability as compared with 3D counterparts. Herein, recent advances of 2D MHPs for the RS memories and artificial synapses realms are comprehensively summarized and discussed, as well as the layered structure properties and the related physical mechanisms are presented. Furthermore, the current issues and developing roadmap for the next-generation 2D MHPs RS memories and artificial synapse are elucidated.

17.
Discov Med ; 36(183): 753-764, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38665024

ABSTRACT

BACKGROUND: Dental fluorosis is a discoloration of the teeth caused by the excessive consumption of fluoride. It represents a distinct manifestation of chronic fluorosis in dental tissues, exerting adverse effects on the human body, particularly on teeth. The transmembrane protein 16a (TMEM16A) is expressed at the junction of the endoplasmic reticulum and the plasma membrane. Alterations in its channel activity can disrupt endoplasmic reticulum calcium homeostasis and intracellular calcium ion concentration, thereby inducing endoplasmic reticulum stress (ERS). This study aims to investigate the influence of calcium supplements and TMEM16A on ERS in dental fluorosis. METHODS: C57BL/6 mice exhibiting dental fluorosis were subjected to an eight-week treatment with varying calcium concentrations: low (0.071%), medium (0.79%), and high (6.61%). Various assays, including Hematoxylin and Eosin (HE) staining, immunohistochemistry, real-time fluorescence quantitative polymerase chain reaction (qPCR), and Western blot, were employed to assess the impact of calcium supplements on fluoride content, ameloblast morphology, TMEM16A expression, and endoplasmic reticulum stress-related proteins (calreticulin (CRT), glucose-regulated protein 78 (GRP78), inositol requiring kinase 1α (IRE1α), PKR-like ER kinase (PERK), activating transcription factor 6 (ATF6)) in the incisors of mice affected by dental fluorosis. Furthermore, mice with dental fluorosis were treated with the TMEM16A inhibitor T16Ainh-A01 along with a medium-dose calcium to investigate the influence of TMEM16A on fluoride content, ameloblast morphology, and endoplasmic reticulum stress-related proteins in the context of mouse incisor fluorosis. RESULTS: In comparison to the model mice, the fluoride content in incisors significantly decreased following calcium supplements (p < 0.01). Moreover, the expression of TMEM16A, CRT, GRP78, IRE1α, PERK, and ATF6 were also exhibited a substantial reduction (p < 0.01), with the most pronounced effect observed in the medium-dose calcium group. Additionally, the fluoride content (p < 0.05) and the expression of CRT, GRP78, IRE1α, PERK, and ATF6 (p < 0.01) were further diminished following concurrent treatment with the TMEM16A inhibitor T16Ainh-A01 and a medium dose of calcium. CONCLUSIONS: The supplementation of calcium or the inhibition of TMEM16A expression appears to mitigate the detrimental effects of fluorosis by suppressing endoplasmic reticulum stress. These findings hold implications for identifying potential therapeutic targets in addressing dental fluorosis.


Subject(s)
Calcium , Dietary Supplements , Fluorosis, Dental , Animals , Male , Mice , Activating Transcription Factor 6/metabolism , Adenine/analogs & derivatives , Ameloblasts/metabolism , Ameloblasts/pathology , Ameloblasts/drug effects , Anoctamin-1/metabolism , Anoctamin-1/antagonists & inhibitors , Anoctamin-1/genetics , Calcium/metabolism , Disease Models, Animal , eIF-2 Kinase/metabolism , eIF-2 Kinase/genetics , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Endoribonucleases/metabolism , Fluorides/toxicity , Fluorides/adverse effects , Fluorosis, Dental/pathology , Fluorosis, Dental/metabolism , Fluorosis, Dental/etiology , Indoles , Mice, Inbred C57BL , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors
18.
J Med Virol ; 96(3): e29531, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38515377

ABSTRACT

The Nucleocapsid Protein (NP) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is not only the core structural protein required for viral packaging, but also participates in the regulation of viral replication, and its post-translational modifications such as phosphorylation have been shown to be an important strategy for regulating virus proliferation. Our previous work identified NP could be ubiquitinated, as confirmed by two independent studies. But the function of NP ubiquitination is currently unknown. In this study, we first pinpointed TRIM6 as the E3 ubiquitin ligase responsible for NP ubiquitination, binding to NP's CTD via its RING and B-box-CCD domains. TRIM6 promotes the K29-typed polyubiquitination of NP at K102, K347, and K361 residues, increasing its binding to viral genomic RNA. Consistently, functional experiments such as the use of the reverse genetic tool trVLP model and gene knockout of TRIM6 further confirmed that blocking the ubiquitination of NP by TRIM6 significantly inhibited the proliferation of SARS-CoV-2. Notably, the NP of coronavirus is relatively conserved, and the NP of SARS-CoV can also be ubiquitinated by TRIM6, indicating that NP could be a broad-spectrum anti-coronavirus target. These findings shed light on the intricate interaction between SARS-CoV-2 and the host, potentially opening new opportunities for COVID-19 therapeutic development.


Subject(s)
COVID-19 , Genome, Viral , SARS-CoV-2 , Ubiquitin-Protein Ligases , Humans , Cell Proliferation , COVID-19/genetics , COVID-19/virology , Nucleocapsid Proteins/genetics , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , Tripartite Motif Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Coronavirus Nucleocapsid Proteins/genetics , Coronavirus Nucleocapsid Proteins/metabolism
19.
Emerg Microbes Infect ; 13(1): 2332669, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38494777

ABSTRACT

Generating an infectious non-human primate (NHP) model using a prevalent monkeypox virus (MPXV) strain has emerged as a crucial strategy for assessing the efficacy of vaccines and antiviral drugs against human MPXV infection. Here, we established an animal model by infecting cynomolgus macaques with the prevalent MPXV strain, WIBP-MPXV-001, and simulating its natural routes of infection. A comprehensive analysis and evaluation were conducted on three animals, including monitoring clinical symptoms, collecting hematology data, measuring viral loads, evaluating cellular and humoral immune responses, and examining histopathology. Our findings revealed that initial skin lesions appeared at the inoculation sites and subsequently spread to the limbs and back, and all infected animals exhibited bilateral inguinal lymphadenopathy, eventually leading to a self-limiting disease course. Viral DNA was detected in post-infection blood, nasal, throat, rectal and blister fluid swabs. These observations indicate that the NHP model accurately reflects critical clinical features observed in human MPXV infection. Notably, the animals displayed clinical symptoms and disease progression similar to those of humans, rather than a lethal outcome as observed in previous studies. Historically, MPXV was utilized as a surrogate model for smallpox. However, our study contributes to a better understanding of the dynamics of current MPXV infections while providing a potential infectious NHP model for further evaluation of vaccines and antiviral drugs against mpox infection. Furthermore, the challenge model closely mimics the primary natural routes of transmission for human MPXV infections. This approach enhances our understanding of the precise mechanisms underlying the interhuman transmission of MPXV.


Subject(s)
Mpox (monkeypox) , Vaccines , Animals , Humans , Monkeypox virus/genetics , Antiviral Agents/pharmacology , Macaca
20.
Chem Sci ; 15(12): 4313-4321, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516082

ABSTRACT

Identifying the cellular targets of bioactive small molecules within tissues has been a major concern in drug discovery and chemical biology research. Compared to cell line models, tissues consist of multiple cell types and complicated microenvironments. Therefore, elucidating the distribution and heterogeneity of targets across various cells in tissues would enhance the mechanistic understanding of drug or toxin action in real-life scenarios. Here, we present a novel multi-omics integration pipeline called Single-cell TargEt Profiling (STEP) that enables the global profiling of protein targets in mammalian tissues with single-cell resolution. This pipeline integrates single-cell transcriptome datasets with tissue-level protein target profiling using chemoproteomics. Taking well-established classic drugs such as aspirin, aristolochic acid, and cisplatin as examples, we confirmed the specificity and precision of cellular drug-target profiles and their associated molecular pathways in tissues using the STEP analysis. Our findings provide more informative insights into the action modes of bioactive molecules compared to in vitro models. Collectively, STEP represents a novel strategy for profiling cellular-specific targets and functional processes with unprecedented resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...