Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.925
Filter
1.
J Asthma ; : 1-13, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39021077

ABSTRACT

OBJECTIVE: The gut-lung axis involves microbial and product interactions between the lung and intestine. Antibiotics for chronic asthma can cause intestinal dysbiosis, disrupting this axis. Sodium houttuyfonate (SH) has diverse biological activities, including modifying gut microbiota, antibacterial, and anti-inflammatory. This study aims to explore the relationship between SH, CD4+ T cells, and gut microbiota. METHODS: Allergic asthma was experimentally induced in mice through injection and inhalation of ovalbumin. After the administration of different amounts of SH, ELISA was utilized to ascertain the levels of inflammatory cytokines in the serum, flow cytometry was used to examine the levels of Th1/Th2 cytokines in CD4+ cells from lung tissues. The expression of T-bet and GATA3 in lung tissue was determined by Western blotting and quantitative real-time PCR assay. Gut microbiota was determined by 16S rRNA gene sequencing. RESULTS: The results showed that SH can alleviate pulmonary injury in asthmatic mice, reducing serum levels of IL-4, IL-5, and IL-13 while simultaneously increasing IFN-γ. Furthermore, SH has been observed to modulate the balance of Th1/Th2 cells by up-regulating the mRNA and protein expression of T-bet but down-regulating GATA3 in the lung tissues of asthmatic mice, thereby promoting the differentiation of Th1 cells. Additionally, SH can regulate the variety and composition of gut microbiota especially genus Akkermansia in asthmatic mice. CONCLUSION: SH can alleviate asthma through the regulation of Th1/Th2 cells and gut microbiota.

3.
J Biochem Mol Toxicol ; 38(7): e23767, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39003575

ABSTRACT

MicroRNAs (miRNAs) are a class of small RNA genes with important roles in cancer biology regulation. There are considerable studies regarding the roles of microRNA-505-3p (miR-505-3p) in cancer development and progression, but the function of miR-505-3p in epithelial ovarian cancer (EOC) has not been fully clarified. Comparative analysis of miRNA expression data set was used to select differentially expressed miRNAs. Quantitative real-time polymerase chain reaction was applied to detect expression levels of RNAs, while western blot and immunofluorescence staining were performed to detect expression levels of proteins of interest. The motility of EOC cells was assessed by wound healing and transwell assays. The binding and regulating relationship between miRNA and its direct target gene was investigated by dual-luciferase assay. Our results show that miR-505-3p was upregulated in recurrent EOC, which significantly inhibits EOC cell motility via modulating cell epithelial-mesenchymal transition. Furthermore, our results indicated that PEAK1 expression was inhibited by direct binding of miR-505-3p into its 3'-URT in EOC cells. Importantly, knockdown of PEAK1 attenuated the effect of mi-505-3p inhibitor on EOC cell migration and invasion. In conclusion, our findings indicate that miRNA-505-3p inhibits EOC cell motility by targeting PEAK1.


Subject(s)
Carcinoma, Ovarian Epithelial , Cell Movement , Epithelial-Mesenchymal Transition , Gene Expression Regulation, Neoplastic , MicroRNAs , Ovarian Neoplasms , MicroRNAs/genetics , MicroRNAs/metabolism , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Carcinoma, Ovarian Epithelial/genetics , Carcinoma, Ovarian Epithelial/metabolism , Carcinoma, Ovarian Epithelial/pathology , Cell Line, Tumor , Epithelial-Mesenchymal Transition/genetics
4.
Mol Med ; 30(1): 102, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009982

ABSTRACT

BACKGROUND: Acute monocytic leukemia-M5 (AML-M5) remains a challenging disease due to its high morbidity and poor prognosis. In addition to the evidence mentioned earlier, several studies have shown that programmed cell death (PCD) serves a critical function in treatment of AML-M5. However, the role and relationship between ferroptosis and necroptosis in AML-M5 remains unclear. METHODS: THP-1 cells were mainly treated with Erastin and IMP-366. The changes of ferroptosis and necroptosis levels were detected by CCK-8, western blot, quantitative real-time PCR, and electron microscopy. Flow cytometry was applied to detect the ROS and lipid ROS levels. MDA, 4-HNE, GSH and GSSG were assessed by ELISA kits. Intracellular distribution of FSP1 was studied by immunofluorescent staining and western blot. RESULTS: The addition of the myristoylation inhibitor IMP-366 to erastin-treated acute monocytic leukemia cell line THP-1 cell not only resulted in greater susceptibility to ferroptosis characterized by lipid peroxidation, glutathione (GSH) depletion and mitochondrial shrinkage, as the FSP1 position on membrane was inhibited, but also increased p-RIPK1 and p-MLKL protein expression, as well as a decrease in caspase-8 expression, and triggered the characteristic necroptosis phenomena, including cytoplasmic translucency, mitochondrial swelling, membranous fractures by FSP1 migration into the nucleus via binding importin α2. It is interesting to note that ferroptosis inhibitor fer-1 reversed necroptosis. CONCLUSION: We demonstrated that inhibition of myristoylation by IMP-366 is capable of switching ferroptosis and ferroptosis-dependent necroptosis in THP-1 cells. In these findings, FSP1-mediated ferroptosis and necroptosis are described as alternative mechanisms of PCD of THP-1 cells, providing potential therapeutic strategies and targets for AML-M5.


Subject(s)
Ferroptosis , Necroptosis , Humans , THP-1 Cells , Cell Membrane/metabolism , Cell Nucleus/metabolism , Reactive Oxygen Species/metabolism , Apoptosis , Piperazines/pharmacology , Acrylamides , Sulfonamides , RNA-Binding Proteins , Nuclear Pore Complex Proteins
5.
Sci Immunol ; 9(97): eadn6509, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028827

ABSTRACT

Most patients treated with US Food and Drug Administration (FDA)-approved chimeric antigen receptor (CAR) T cells eventually experience disease progression. Furthermore, CAR T cells have not been curative against solid cancers and several hematological malignancies such as T cell lymphomas, which have very poor prognoses. One of the main barriers to the clinical success of adoptive T cell immunotherapies is CAR T cell dysfunction and lack of expansion and/or persistence after infusion. In this study, we found that CD5 inhibits CAR T cell activation and that knockout (KO) of CD5 using CRISPR-Cas9 enhances the antitumor effect of CAR T cells in multiple hematological and solid cancer models. Mechanistically, CD5 KO drives increased T cell effector function with enhanced cytotoxicity, in vivo expansion, and persistence, without apparent toxicity in preclinical models. These findings indicate that CD5 is a critical inhibitor of T cell function and a potential clinical target for enhancing T cell therapies.


Subject(s)
CD5 Antigens , Immunotherapy, Adoptive , T-Lymphocytes , Animals , Immunotherapy, Adoptive/methods , CD5 Antigens/immunology , Mice , Humans , T-Lymphocytes/immunology , T-Lymphocytes/transplantation , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Cell Line, Tumor , CRISPR-Cas Systems , Female
6.
Talanta ; 279: 126574, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39029179

ABSTRACT

The group B Streptococcus (GBS) can generate vertical transmission to infants during delivery, has been seriously threatening the health of infants. Rapid and accurate prenatal GBS diagnosis for pregnant women is a deterministic blueprint to avoid infant viruses. Here, we developed an extraction-free nucleic acid isothermal amplification/CRISPR-Cas12a cutting one-pot system for GBS diagnostic assay by using suboptimal protospacer adjacent motifs, effectively avoiding multiple handling steps and uncapping contamination. The GBS diagnosis assay based on a one-pot system was validated by using fluorescent technique and lateral flow assay strips, exhibited fantastic specificity, accuracy and sensitivity with a limit of detection of 32 copies per reaction (0.64 copies/µL). Moreover, a portable device was constructed and integrated with the one-pot system to realize the GBS detection without professional and scene restrictions, it showed excellent performance in clinical sample detection, which achieved optical and portable GBS detection for point-of-care testing or home-self testing.

7.
Clin Exp Med ; 24(1): 140, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951255

ABSTRACT

Although renal cell carcinoma (RCC) is a prevalent type of cancer, the most common pathological subtype, clear cell renal cell carcinoma (ccRCC), still has poorly understood molecular mechanisms of progression. Moreover, interferon-stimulated gene 15 (ISG15) is associated with various types of cancer; however, its biological role in ccRCC remains unclear.This study aimed to explore the role of ISG15 in ccRCC progression.ISG15 expression was upregulated in ccRCC and associated with poor prognosis. RNA sequence analysis and subsequent experiments indicated that ISG15 modulated IL6/JAK2/STAT3 signaling to promote ccRCC proliferation, migration, and invasion. Additionally, our animal experiments confirmed that sustained ISG15 knockdown reduced tumor growth rate in nude mice and promoted cell apoptosis. ISG15 modulates the IL6/JAK2/STAT3 pathway, making it a potential therapeutic target and prognostic biomarker for ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Proliferation , Cytokines , Interleukin-6 , Janus Kinase 2 , Kidney Neoplasms , Mice, Nude , STAT3 Transcription Factor , Signal Transduction , Ubiquitins , Humans , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Carcinoma, Renal Cell/genetics , Animals , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Janus Kinase 2/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Cytokines/metabolism , Ubiquitins/metabolism , Ubiquitins/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Kidney Neoplasms/genetics , Mice , Cell Line, Tumor , Male , Cell Movement , Female , Apoptosis , Gene Expression Regulation, Neoplastic , Prognosis , Disease Progression
8.
J Pineal Res ; 76(5): e12993, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39054842

ABSTRACT

The interplay between circadian rhythms and epilepsy has gained increasing attention. The suprachiasmatic nucleus (SCN), which acts as the master circadian pacemaker, regulates physiological and behavioral rhythms through its complex neural networks. However, the exact role of the SCN and its Bmal1 gene in the development of epilepsy remains unclear. In this study, we utilized a lithium-pilocarpine model to induce epilepsy in mice and simulated circadian disturbances by creating lesions in the SCN and specifically knocking out the Bmal1 gene in the SCN neurons. We observed that the pilocarpine-induced epileptic mice experienced increased daytime seizure frequency, irregular oscillations in core body temperature, and circadian gene alterations in both the SCN and the hippocampus. Additionally, there was enhanced activation of GABAergic projections from the SCN to the hippocampus. Notably, SCN lesions intensified seizure activity, concomitant with hippocampal neuronal damage and GABAergic signaling impairment. Further analyses using the Gene Expression Omnibus database and gene set enrichment analysis indicated reduced Bmal1 expression in patients with medial temporal lobe epilepsy, potentially affecting GABA receptor pathways. Targeted deletion of Bmal1 in SCN neurons exacerbated seizures and pathology in epilepsy, as well as diminished hippocampal GABAergic efficacy. These results underscore the crucial role of the SCN in modulating circadian rhythms and GABAergic function in the hippocampus, aggravating the severity of seizures. This study provides significant insights into how circadian rhythm disturbances can influence neuronal dysfunction and epilepsy, highlighting the therapeutic potential of targeting SCN and the Bmal1 gene within it in epilepsy management.


Subject(s)
Circadian Rhythm , Hippocampus , Mice, Inbred C57BL , Suprachiasmatic Nucleus , Animals , Suprachiasmatic Nucleus/metabolism , Mice , Hippocampus/metabolism , ARNTL Transcription Factors/genetics , ARNTL Transcription Factors/metabolism , Male , Epilepsy/chemically induced , Epilepsy/metabolism , Epilepsy/genetics , Pilocarpine , Seizures/metabolism , Seizures/chemically induced , Seizures/genetics , Seizures/physiopathology , Mice, Knockout , GABAergic Neurons/metabolism
9.
Angew Chem Int Ed Engl ; : e202411270, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048536

ABSTRACT

Ionic liquids (ILs) are prized for their selective dissolution of carbon dioxide (CO2), leading to their widespread use in ionogel membranes for gas separation. Despite their advantages, creating sustainable ionogel membranes with high IL contents poses challenges due to limited mechanical strength, leakage risks, and poor recyclability. Herein, we leverage copolymerized and supramolecularly bound ILs to develop ionogel membranes with high mechanical strength, zero leakage, and excellent self-healing and recycling capabilities. These membranes exhibit superior ideal selectivity for gas separation compared to other reported ionogel membranes, achieving a CO2/nitrogen selectivity of 61.7 and a CO2/methane selectivity of 24.6, coupled with an acceptable CO2 permeability of 186.4 Barrer. Additionally, these gas separation ionogel membranes can be upcycled into ionic skins for sensing applications, further enhancing their utility. This research outlines a strategic approach to molecularly engineer ionogel membranes, offering a promising pathway for developing sustainable, high-performance materials for advanced gas separation technologies.

10.
Front Neurol ; 15: 1413582, 2024.
Article in English | MEDLINE | ID: mdl-38974685

ABSTRACT

Background: Epilepsy ranks among the most common neurological disorders worldwide, frequently accompanied by depression as a prominent comorbidity. This study employs bibliometric analysis to reveal the research of comorbid epilepsy and depression over the past two decades, aiming to explore trends and contribute insights to ongoing investigations. Methods: We conducted a comprehensive search on the Web of Science Core Collection database and downloaded relevant publications on comorbid epilepsy and depression published from 2003 to 2023. VOSviewer and CiteSpace were mainly used to analyze the authors, institutions, countries, publishing journals, reference co-citation patterns, keyword co-occurrence, keyword clustering, and other aspects to construct a knowledge atlas. Results: A total of 5,586 publications related to comorbid epilepsy and depression were retrieved, with a general upward trend despite slight fluctuations in annual publications. Publications originated from 121 countries and 636 institutions, with a predominant focus on clinical research. The United States led in productivity (1,529 articles), while Melbourne University emerged as the most productive institution (135 articles). EPILEPSY & BEHAVIOR was the journal with the highest publication output (1,189 articles) and citation count. Keyword analysis highlighted emerging trends, including "recognitive impairment" and "mental health," indicating potential future research hotspots and trends. Conclusion: This study is one of the first to perform a bibliometric analysis of the 20-year scientific output of comorbid epilepsy and depression. While research has trended upwards, ambiguity in pathogenesis and the absence of standardized diagnostic guidelines remain concerning. Our analysis offers valuable guidance for researchers, informing that this might be a strong area for future collaborations.

11.
Nat Biotechnol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956324

ABSTRACT

The continued development of novel genome editors calls for a universal method to analyze their off-target effects. Here we describe a versatile method, called Tracking-seq, for in situ identification of off-target effects that is broadly applicable to common genome-editing tools, including Cas9, base editors and prime editors. Through tracking replication protein A (RPA)-bound single-stranded DNA followed by strand-specific library construction, Tracking-seq requires a low cell input and is suitable for in vitro, ex vivo and in vivo genome editing, providing a sensitive and practical genome-wide approach for off-target detection in various scenarios. We show, using the same guide RNA, that Tracking-seq detects heterogeneity in off-target effects between different editor modalities and between different cell types, underscoring the necessity of direct measurement in the original system.

12.
J Integr Plant Biol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953749

ABSTRACT

The plant hormone jasmonate (JA) regulates plant growth and immunity by orchestrating a genome-wide transcriptional reprogramming. In the resting stage, JASMONATE-ZIM DOMAIN (JAZ) proteins act as main repressors to regulate the expression of JA-responsive genes in the JA signaling pathway. However, the mechanisms underlying de-repression of JA-responsive genes in response to JA treatment remain elusive. Here, we report two nuclear factor Y transcription factors NF-YB2 and NF-YB3 (thereafter YB2 and YB3) play key roles in such de-repression in Arabidopsis. YB2 and YB3 function redundantly and positively regulate plant resistance against the necrotrophic pathogen Botrytis cinerea, which are specially required for transcriptional activation of a set of JA-responsive genes following inoculation. Furthermore, YB2 and YB3 modulated their expression through direct occupancy and interaction with histone demethylase Ref6 to remove repressive histone modifications. Moreover, YB2 and YB3 physically interacted with JAZ repressors and negatively modulated their abundance, which in turn attenuated the inhibition of JAZ proteins on the transcription of JA-responsive genes, thereby activating JA response and promoting disease resistance. Overall, our study reveals the positive regulators of YB2 and YB3 in JA signaling by positively regulating transcription of JA-responsive genes and negatively modulating the abundance of JAZ proteins.

13.
Angew Chem Int Ed Engl ; : e202409656, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38837290

ABSTRACT

Perovskite quantum dots (QDs) have shown attractive prospects in the field of visible photocatalysis, especially in the synthesis of high value-added chemicals. However, under aerobic conditions, the stable operation of QD catalysts has been limited by the reactive oxygen species (ROS) generated by photoexcitation, especially superoxide species O2⋅-. Here, we propose a strategy of Ce3+ doping in perovskite QDs to guide superoxide species for photocatalytic oxidation reactions. In C(sp3)-H bond oxidation of hydrocarbons, superoxide species were rapidly generated and efficiently utilized on the surface of perovskite QDs, which achieves the stable operation of the catalytic system and obtains a high product conversion rate (15.3 mmol/g/h for benzaldehydes). The mechanism studies show that the strong Ce-oxygen affinity accelerates the relaxation process of photoinduced exciton transfer to superoxide species and inhibits the radiative recombination pathway. This work provides a new idea of utilizing oxygen species on perovskite surface and broadens the design strategy of high-performance QD photocatalysts.

14.
J Dig Dis ; 25(4): 255-265, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38837552

ABSTRACT

OBJECTIVES: In this study we aimed to assess the impact of acetylation of hepatocyte nuclear factor 4α (HNF4α) on lysine 458 on the differentiation therapy of hepatocellular carcinoma (HCC). METHODS: Periodic acid-Schiff (PAS) staining, Dil-acetylated low-density lipoprotein (Dil-Ac-LDL) uptake, and senescence-associated ß-galactosidase (SA-ß-gal) activity analysis were performed to assess the differentiation of HCC cells. HNF4α protein was detected by western blot and immunohistochemistry (IHC). The effects of HNF4α-K458 acetylation on HCC malignancy were evaluated in HCC cell lines, a Huh-7 xenograft mouse model, and an orthotopic model. The differential expression genes in Huh-7 xenograft tumors were screened by RNA-sequencing analysis. RESULTS: K458R significantly enhanced the inhibitory effect of HNF4α on the malignancy of HCC cells, whereas K458Q reduced the inhibitory effects of HNF4α. Moreover, K458R promoted, while K458Q decreased, HNF4α-induced HCC cell differentiation. K458R stabilized HNF4α, while K458Q accelerated the degradation of HNF4α via the ubiquitin proteasome system. K458R also enhanced the ability of HNF4α to inhibit cell growth of HCC in the Huh-7 xenograft mouse model and the orthotopic model. RNA-sequencing analysis revealed that inhibiting K458 acetylation enhanced the transcriptional activity of HNF4α without altering the transcriptome induced by HNF4α in HCC. CONCLUSION: Our data revealed that inhibiting K458 acetylation of HNF4α might provide a more promising candidate for differential therapy of HCC.


Subject(s)
Carcinoma, Hepatocellular , Cell Differentiation , Hepatocyte Nuclear Factor 4 , Liver Neoplasms , Hepatocyte Nuclear Factor 4/genetics , Hepatocyte Nuclear Factor 4/metabolism , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Acetylation , Animals , Humans , Mice , Cell Line, Tumor , Lysine/metabolism , Xenograft Model Antitumor Assays
15.
Cell Mol Immunol ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839915

ABSTRACT

Acute systemic inflammation critically alters the function of the immune system, often promoting myelopoiesis at the expense of lymphopoiesis. In the thymus, systemic inflammation results in acute thymic atrophy and, consequently, impaired T-lymphopoiesis. The mechanism by which systemic inflammation impacts the thymus beyond suppressing T-cell development is still unclear. Here, we describe how the synergism between TL1A and IL-18 suppresses T-lymphopoiesis to promote thymic myelopoiesis. The protein levels of these two cytokines were elevated in the thymus during viral-induced thymus atrophy infection with murine cytomegalovirus (MCMV) or pneumonia virus of mice (PVM). In vivo administration of TL1A and IL-18 induced acute thymic atrophy, while thymic neutrophils expanded. Fate mapping with Ms4a3-Cre mice demonstrated that thymic neutrophils emerge from thymic granulocyte-monocyte progenitors (GMPs), while Rag1-Cre fate mapping revealed a common developmental path with lymphocytes. These effects could be modeled ex vivo using neonatal thymic organ cultures (NTOCs), where TL1A and IL-18 synergistically enhanced neutrophil production and egress. NOTCH blockade by the LY411575 inhibitor increased the number of neutrophils in the culture, indicating that NOTCH restricted steady-state thymic granulopoiesis. To promote myelopoiesis, TL1A, and IL-18 synergistically increased GM-CSF levels in the NTOC, which was mainly produced by thymic ILC1s. In support, TL1A- and IL-18-induced granulopoiesis was completely prevented in NTOCs derived from Csf2rb-/- mice and by GM-CSFR antibody blockade, revealing that GM-CSF is the essential factor driving thymic granulopoiesis. Taken together, our findings reveal that TL1A and IL-18 synergism induce acute thymus atrophy while  promoting extramedullary thymic granulopoiesis in a NOTCH and GM-CSF-controlled manner.

16.
J Neurochem ; 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38822659

ABSTRACT

The relationship between peripheral inflammatory markers, their dynamic changes, and the disease severity of myasthenia gravis (MG) is still not fully understood. Besides, the possibility of using it to predict the short-term poor outcome of MG patients have not been demonstrated. This study aims to investigate the relationship between peripheral inflammatory markers and their dynamic changes with Myasthenia Gravis Foundation of America (MGFA) classification (primary outcome) and predict the short-term poor outcome (secondary outcome) in MG patients. The study retrospectively enrolled 154 MG patients from June 2016 to December 2021. The logistic regression was used to investigate the relationship of inflammatory markers with MGFA classification and determine the factors for model construction presented in a nomogram. Finally, net reclassification improvement (NRI) and integrated discrimination improvement (IDI) were utilized to evaluate the incremental capacity. Logistic regression revealed significant associations between neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), aggregate index of systemic inflammation (AISI) and MGFA classification (p = 0.013, p = 0.032, p = 0.017, respectively). Incorporating dynamic changes of inflammatory markers into multivariable models improved their discriminatory capacity of disease severity, with significant improvements observed for NLR, systemic immune-inflammation index (SII) and AISI in NRI and IDI. Additionally, AISI was statistically associated with short-term poor outcome and a prediction model incorporating dynamic changes of inflammatory markers was constructed with the area under curve (AUC) of 0.953, presented in a nomograph. The inflammatory markers demonstrate significant associations with disease severity and AISI could be regarded as a possible and easily available predictive biomarker for short-term poor outcome in MG patients.

17.
Neural Netw ; 178: 106402, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38823067

ABSTRACT

This paper investigates a sliding mode control method for a class of uncertain delayed fractional-order reaction-diffusion memristor neural networks. Different from most existing literature on sliding mode control for fractional-order reaction-diffusion systems, this study constructs a linear sliding mode switching function and designs the corresponding sliding mode control law. The sufficient theory for the globally asymptotic stability of the sliding mode dynamics are provided, and it is proven that the sliding mode surface is finite-time reachable under the proposed control law, with an estimate of the maximum reaching time. Finally, a numerical test is presented to validate the effectiveness of the theoretical analysis.

18.
Appl Opt ; 63(12): 2994-3002, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38856443

ABSTRACT

In this paper, we establish a multi-stage fiber amplifier with pseudo-random binary sequence (PRBS) phase modulation. The stimulated Brillouin gain spectra of the main amplifier with both the unmodulated and pseudo-random binary sequence phase modulated configuration are measured (with corresponding output power), and the stimulated Brillouin scattering (SBS) threshold is investigated experimentally and theoretically. The pseudo-random binary sequence phase modulation parameters are optimized by theoretical simulation. With a two-stage preamplifier chain and a counter-pumping main amplifier stage, a maximum 3.05 kW output power with a slope efficiency of 85.9% is obtained experimentally. The central wavelength of the fiber amplifier is 1050 nm, associated with a full-width at half-maximum linewidth of 13.7 GHz. The stimulated Brillouin scattering reflectivity is below 0.01% at 3.05 kW at 13.7 GHz, which indicates that stimulated Brillouin scattering can be suppressed efficiently at this power and linewidth level.

19.
Nanoscale Adv ; 6(12): 3220-3228, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38868834

ABSTRACT

Due to the unique and excellent optical performance and promising prospect for various photonics applications, cavity-enhanced superfluorescence (CESF) in perovskite quantum dot assembled superstructures has garnered wide attention. However, the stringent requirements and high threshold for achieving CESF limit its further development and application. The high threshold of CESF in quantum dot superstructures is mainly attributed to the low radiation recombination rate of the quantum dot and the unsatisfactory light field limiting the ability of the assembled superstructures originating from low controllability of self-assembly. Herein, we propose a strategy to reduce the threshold of CESF in quantum dot superstructure microcavities from two aspects: facet engineering optimization of quantum dot blocks and controllability improvement of the assembly method. We introduce dodecahedral quantum dots with lower nonradiative recombination, substituting frequently used cubic quantum dots as assembly blocks. Besides, we adopt the micro-emulsion droplet assembly method to obtain spherical perovskite quantum dot superparticles with high packing factors and orderly internal arrangements, which are more controllable and efficient than the conventional solvent-drying methods. Based on the dodecahedral quantum dot superparticles, we realized low-threshold CESF (Pth = 15.6 µJ cm-2). Our work provides a practical and scalable avenue for realizing low threshold CESF in quantum dot assembled superstructure systems.

20.
Angew Chem Int Ed Engl ; : e202406596, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872354

ABSTRACT

Electrolytes endowed with high oxidation/reduction interfacial stability, fast Li-ion desolvation process and decent ionic conductivity over wide temperature region are known critical for low temperature and fast-charging performance of energy-dense batteries, yet these characteristics are rarely satisfied simultaneously. Here, we report anchored weakly-solvated electrolytes (AWSEs), that are designed by extending the chain length of polyoxymethylene ether electrolyte solvent, can achieve the above merits at moderate salt concentrations. The -O-CH2-O- segment in solvent enables the weak four-membered ring Li+ coordination structure and the increased number of segments can anchor the solvent by Li+ without largely sacrificing the ionic dissociation ability. Therefore, the single salt/single solvent AWSEs enable solvent co-intercalation-free behavior towards graphite (Gr) anode and high oxidation stability towards high-nickel cathode (LiNi0.8Co0.1Mn0.1O2-NCM811), as well as the formation of inorganic rich electrode/electrolyte interphase on both of them due to the anion-rich solvation shells. The capacity retention of Gr||NCM811 Ah-class pouch cell can reach 70.85% for 1000 cycles at room-temperature and 75.86% for 400 cycles at -20 °C. This work points out a promising path toward the molecular design of electrolyte solvents for high-energy/power battery systems that are adaptive for extreme conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...