Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.613
Filter
1.
Clin Respir J ; 18(7): e13808, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39012086

ABSTRACT

BACKGROUND: Limited data is available regarding the weaning techniques employed for mechanical ventilation (MV) in elderly patients with dementia in China. OBJECTIVE: The primary objective of this study is to investigate diverse weaning methods in relation to the prognostic outcomes of elderly patients with dementia undergoing MV in the intensive care unit (ICU). Specifically, we seek to compare the prognosis, likelihood of successful withdrawal from MV, and the length of stay (LOS) in the ICU. METHODS: The study was conducted as a randomized controlled trial, encompassing a group of 169 elderly patients aged ≥ 65 years with dementia who underwent MV. Three distinct weaning methods were used for MV cessation, namely, the tapering parameter, spontaneous breathing trial (SBT), and SmartCare (Dräger, Germany). RESULTS: In the tapering parameter group, the LOS in the ICU was notably prolonged compared to both the SBT and SmartCare groups. However, no statistically significant differences were observed among the groups with respect to demographic characteristics, such as age and sex, as well as factors including the rationale for ICU admission, cause of MV, MV mode, oxygenation index, hemoglobin levels, albumin levels, ejection fraction, sedation and analgesia practices, tracheotomy, duration of MV, successful extubation, successful weaning, incidences of ventilator-associated pneumonia, and overall prognosis. CONCLUSIONS: Both the SBT and SmartCare withdrawal methods demonstrated a reduction in the duration of MV and LOS in the ICU when compared to the tapering parameter method. TRIAL REGISTRATION: Chinese Clinical Trial Registry: ChiCTR1900028449.


Subject(s)
Dementia , Intensive Care Units , Length of Stay , Respiration, Artificial , Ventilator Weaning , Humans , Ventilator Weaning/methods , Male , Female , Aged , Dementia/therapy , Respiration, Artificial/methods , Length of Stay/statistics & numerical data , China/epidemiology , Prognosis , Aged, 80 and over
2.
Front Endocrinol (Lausanne) ; 15: 1368046, 2024.
Article in English | MEDLINE | ID: mdl-39010897

ABSTRACT

Introduction: Pathogens causing diabetic foot infections (DFIs) vary by region globally; however, knowledge of the causative organism is essential for effective empirical treatment. We aimed to determine the incidence and antibiotic susceptibility of DFI pathogens worldwide, focusing on Asia and China. Methods: Through a comprehensive literature search, we identified published studies on organisms isolated from DFI wounds from January 2000 to December 2020. Results: Based on our inclusion criteria, we analyzed 245 studies that cumulatively reported 38,744 patients and 41,427 isolated microorganisms. DFI pathogens varied according to time and region. Over time, the incidence of Gram-positive and Gram-negative aerobic bacteria have decreased and increased, respectively. America and Asia have the highest (62.74%) and lowest (44.82%) incidence of Gram-negative bacteria, respectively. Africa has the highest incidence (26.90%) of methicillin-resistant Staphylococcus aureus. Asia has the highest incidence (49.36%) of Gram-negative aerobic bacteria with species infection rates as follows: Escherichia coli, 10.77%; Enterobacter spp., 3.95%; and Pseudomonas aeruginosa, 11.08%, with higher local rates in China and Southeast Asia. Linezolid, vancomycin, and teicoplanin were the most active agents against Gram-positive aerobes, while imipenem and cefoperazone-sulbactam were the most active agents against Gram-negative aerobes. Discussion: This systematic review showed that over 20 years, the pathogens causing DFIs varied considerably over time and region. This data may inform local clinical guidelines on empirical antibiotic therapy for DFI in China and globally. Regular large-scale epidemiological studies are necessary to identify trends in DFI pathogenic bacteria. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023447645.


Subject(s)
Anti-Bacterial Agents , Diabetic Foot , Humans , Diabetic Foot/microbiology , Diabetic Foot/epidemiology , China/epidemiology , Anti-Bacterial Agents/therapeutic use , Incidence , Bacterial Infections/epidemiology , Bacterial Infections/microbiology , Bacterial Infections/drug therapy
3.
Biomaterials ; 311: 122696, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38971121

ABSTRACT

Cancer immunotherapy has been developed to improve therapeutic effects for patients by activating the innate immune stimulator of interferon gene (STING) pathway. However, most patients cannot benefit from this therapy, mainly due to the problems of excessively low immune responses and lack of tumor specificity. Herein, we report a solution to these two problems by developing a bifunctional platform of black phosphorus quantum dots (BPQDs) for STING agonists. Specifically, BPQDs could connect targeted functional groups and regulate surface zeta potential by coordinating metal ions to increase loading (over 5 times) while maintaining high universality (7 STING agonists). The controlled release of STING agonists enabled specific interactions with their proteins, activating the STING pathway and stimulating the secretion release of immunosuppressive factors by phosphorylating TBK1 and IFN-IRF3 and secreting high levels of immunostimulatory cytokines, including IL-6, IFN-α, and IFN-ß. Moreover, the immunotherapy was enhanced was enhanced mild photothermal therapy (PTT) of BPQDs platform, producing enough T cells to eliminate tumors and prevent tumor recurrence. This work facilitates further research on targeted delivery of small-molecule immune drugs to enhance the development of clinical immunotherapy.

4.
Clin Cancer Res ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990098

ABSTRACT

PURPOSE: Enzalutamide after abiraterone progression is commonly used in metastatic castration resistant prostate cancer (mCRPC) despite a low rate of clinical benefit. Analyzing IMbassador250, a phase III trial assessing enzalutamide with or without atezolizumab after abiraterone, we hypothesized that baseline and early changes in circulating tumor DNA (ctDNA) tumor fraction (TF) may identify patients more likely to exhibit survival benefit from enzalutamide. EXPERIMENTAL DESIGN: ctDNA was quantified from plasma samples using a tissue-agnostic assay without buffy coat sequencing. Baseline ctDNA TF, changes in ctDNA TF from baseline to cycle 3 day 1 (C3D1), and detection at C3D1 alone, were compared vs overall response rate (ORR), radiographic progression-free survival (rPFS), median OS (mOS), and 50% reduction in PSA. RESULTS: ctDNA TF detection at baseline and/or C3D1 was associated with shorter rPFS and OS in 494 evaluable patients. Detection of ctDNA TF at C3D1, with or without detection at C1D1, was associated with worse rPFS and mOS than lack of detection. When ctDNA TF and PSA response at C3D1 were discordant, patients with [ctDNA TF undetected/PSA not reduced] had more favorable outcomes than [ctDNA TF detected/PSA reduced] (mOS 22.1 months vs. 16 months, p<0.001). CONCLUSIONS: In a large cohort of mCRPC patients receiving enzalutamide after abiraterone, we demonstrate the utility of a new tissue-agnostic assay for monitoring molecular response based on ctDNA TF detection and dynamics. CtDNA TF provides a minimally-invasive, complementary biomarker to PSA testing and may refine personalized treatment approaches.

5.
Life Sci ; 352: 122906, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38992575

ABSTRACT

Nuclear factor erythroid 2-related factor 1 (NFE2L1, also known as Nrf1) is a crucial member of the CNC-bZIP subfamily of transcription factors expressed ubiquitously throughout our body. Recent findings have revealed its association with various metabolic processes, encompassing glucose, lipid, and protein metabolism. In the realm of glucose metabolism, NFE2L1 exerts regulatory control by modulating pancreatic ß cells and insulin production. It also influences glucose metabolism in liver and the insulin sensitivity of adipose tissue. Regarding lipid metabolism, NFE2L1 governs this process by influencing the expression of specific adipogenic and lipolysis genes in both liver and adipose tissue. Additionally, NFE2L1 regulates specific lipids, such as cholesterol. These involvements underlie various manifestations of NFE2L1 deficiency such as adipocyte hypertrophy, inflammation, and steatohepatitis. In the realm of protein metabolism, NFE2L1 serves as a major transcription factor regulating the 26S proteasome genes expression, which dysfunction has been related with multiple diseases including neurodegenerative diseases, cancers, autoimmune conditions, etc. In this comprehensive review, we summarize the diverse roles that NFE2L1 plays in glucose, lipid, and protein metabolism, as well as its impact on diseases related to these metabolic processes.

6.
Commun Biol ; 7(1): 827, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972908

ABSTRACT

The "hologenome" concept is an increasingly popular way of thinking about microbiome-host for marine organisms. However, it is challenging to track hologenome dynamics because of the large amount of material, with tracking itself usually resulting in damage or death of the research object. Here we show the simple and efficient holo-2bRAD approach for the tracking of hologenome dynamics in marine invertebrates (i.e., scallop and shrimp) from one holo-2bRAD library. The stable performance of our approach was shown with high genotyping accuracy of 99.91% and a high correlation of r > 0.99 for the species-level profiling of microorganisms. To explore the host-microbe association underlying mass mortality events of bivalve larvae, core microbial species changed with the stages were found, and two potentially associated host SNPs were identified. Overall, our research provides a powerful tool with various advantages (e.g., cost-effective, simple, and applicable for challenging samples) in genetic, ecological, and evolutionary studies.


Subject(s)
Aquatic Organisms , Animals , Aquatic Organisms/genetics , Invertebrates/genetics , Invertebrates/physiology , Microbiota , Polymorphism, Single Nucleotide
7.
Front Pharmacol ; 15: 1416295, 2024.
Article in English | MEDLINE | ID: mdl-38948469

ABSTRACT

Introduction: Genomic profiling has revolutionized therapeutic interventions and the clinical management of liver cancer. However, pathogenetic mechanisms, molecular determinants of recurrence, and predictive biomarkers for first-line treatment (anti-PD-(L)1 plus bevacizumab) in liver cancer remain incompletely understood. Materials and methods: Targeted next-generation sequencing (tNGS) (a 603-cancer-gene panel) was applied for the genomic profiling of 232 hepatocellular carcinoma (HCC) and 22 intrahepatic cholangiocarcinoma (ICC) patients, among which 47 unresectable/metastatic HCC patients underwent anti-PD-1 plus bevacizumab therapy. Genomic alterations were estimated for their association with vascular invasion (VI), location of onset, recurrence, overall survival (OS), recurrence-free survival (RFS), and anti-PD-1 plus bevacizumab therapy response. Results: The genomic landscape exhibited that the most commonly altered genes in HCC were TP53, FAT3, PDE4DIP, KMT2C, FAT1, and MYO18A, while TP53, FAT1, FAT3, PDE4DIP, ROS1, and GALNT11 were frequently altered in ICC; notably, KRAS (18.18% vs. 1.29%) and BAP1 (13.64% vs. 1.29%) alterations were significantly more prevalent in ICC. Comparison analysis demonstrated the distinct clinicopathological/genomic characterizations between Chinese and Western HCC cohorts. Genomic profiling of HCC underlying VI showed that LDLR, MSH2, KDM5D, PDE3A, and FOXO1 were frequently altered in the VI group compared to patients without VIs. Compared to the right hepatic lobes of HCC patients, the left hepatic lobe of HCC patients had superior OS (median OS: 36.77 months vs. unreached, p < 0.05). By further comparison, Notch signaling pathway-related alterations were significantly prevalent among the right hepatic lobes of HCC patients. Of note, multivariate Cox regression analysis showed that altered RB1, NOTCH3, MGA, SYNE1, and ZFHX3, as independent prognostic factors, were significantly correlated with the OS of HCC patients. Furthermore, altered LATS1 was abundantly enriched in the HCC-recurrent group, and impressively, it was independent of clinicopathological features in predicting RFS (median RFS of altered type vs. wild-type: 5.57 months vs. 22.47 months, p < 0.01). Regarding those treated HCC patients, TMB value, altered PTPRZ1, and cell cycle-related alterations were identified to be positively associated with the objective response rate (ORR), but KMT2D alterations were negatively correlated with ORR. In addition, altered KMT2D and cell cycle signaling were significantly associated with reduced and increased time to progression-free survival (PFS), respectively. Conclusion: Comprehensive genomic profiling deciphered distinct molecular characterizations underlying VI, location of onset, recurrence, and survival time in liver cancer. The identification of novel genetic predictors of response to anti-PD-1 plus bevacizumab in HCC facilitated the development of an evidence-based approach to therapy.

8.
Plant Cell Environ ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38988259

ABSTRACT

Loss of Lon1 led to stunted plant growth and accumulation of nuclear-encoded mitochondrial proteins including Lon1 substrates. However, an in-depth label-free proteomics quantification of mitochondrial proteins in lon1 revealed that the majority of mitochondrial-encoded proteins decreased in abundance. Additionally, we found that lon1 mutants contained protein aggregates in the mitochondrial that were enriched in metabolic enzymes, ribosomal subunits and PPR-containing proteins of the translation apparatus. These mutants exhibited reduced general mitochondrial translation as well as deficiencies in RNA splicing and editing. These findings support the role of Lon1 in maintaining a functional translational apparatus for mitochondrial-encoded gene translation. Transcriptome analysis of lon1 revealed a mitochondrial unfolded protein response reminiscent of the mitochondrial retrograde signalling dependent on the transcription factor ANAC017. Notably, lon1 mutants exhibited transiently elevated ethylene production, and the shortened hypocotyl observed in lon1 mutants during skotomorphogenesis was partially alleviated by ethylene inhibitors. Furthermore, the short root phenotype was partially ameliorated by introducing a mutation in the ethylene receptor ETR1. Interestingly, the upregulation of only a select few target genes was linked to ETR1-mediated ethylene signalling. Together this provides multiple steps in the link between loss of Lon1 and signalling responses to restore mitochondrial protein homoeostasis in plants.

9.
Nat Commun ; 15(1): 5731, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977708

ABSTRACT

Neuropilin-1 (NRP1), a co-receptor for various cytokines, including TGF-ß, has been identified as a potential therapeutic target for fibrosis. However, its role and mechanism in renal fibrosis remains elusive. Here, we show that NRP1 is upregulated in distal tubular (DT) cells of patients with transplant renal insufficiency and mice with renal ischemia-reperfusion (I-R) injury. Knockout of Nrp1 reduces multiple endpoints of renal injury and fibrosis. We find that Nrp1 facilitates the binding of TNF-α to its receptor in DT cells after renal injury. This signaling results in a downregulation of lysine crotonylation of the metabolic enzyme Cox4i1, decreases cellular energetics and exacerbation of renal injury. Furthermore, by single-cell RNA-sequencing we find that Nrp1-positive DT cells secrete collagen and communicate with myofibroblasts, exacerbating acute kidney injury (AKI)-induced renal fibrosis by activating Smad3. Dual genetic deletion of Nrp1 and Tgfbr1 in DT cells better improves renal injury and fibrosis than either single knockout. Together, these results reveal that targeting of NRP1 represents a promising strategy for the treatment of AKI and subsequent chronic kidney disease.


Subject(s)
Acute Kidney Injury , Fibrosis , Mice, Knockout , Neuropilin-1 , Receptor, Transforming Growth Factor-beta Type I , Reperfusion Injury , Smad3 Protein , Neuropilin-1/metabolism , Neuropilin-1/genetics , Animals , Humans , Mice , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Acute Kidney Injury/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Receptor, Transforming Growth Factor-beta Type I/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/pathology , Smad3 Protein/metabolism , Smad3 Protein/genetics , Male , Tumor Necrosis Factor-alpha/metabolism , Signal Transduction , Mice, Inbred C57BL , Kidney Tubules/pathology , Kidney Tubules/metabolism , Myofibroblasts/metabolism , Myofibroblasts/pathology , Collagen/metabolism
10.
J Cell Physiol ; : e31384, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012048

ABSTRACT

l-2-Hydroxyglutarate (l-2-HG) has been regarded as a tumor metabolite, and it plays a crucial role in adaptation of tumor cells to hypoxic conditions. However, the role of l-2-HG in tumor radioresistance and the underlying mechanism have not yet been revealed. Here, we found that l-2-HG exhibited to have radioresistance effect on U87 human glioblastoma cells, which could reduce DNA damage and apoptosis caused by irradiation, promote cell proliferation and migration, and impair G2/M phase arrest. Mechanistically, l-2-HG upregulated the protein level of hypoxia-inducible factor-1α (HIF-1α) and the expression levels of HIF-1α downstream target genes. The knockdown of l-2-hydroxyglutarate dehydrogenase (L2HGDH) gene promoted the tumor growth and proliferation of U87 cells in nude mice by increasing HIF-1α expression level in vivo. In addition, the low expression level of L2HGDH gene was correlated with the short survival of patients with glioma or kidney cancer. In conclusion, our study revealed the role and mechanism of l-2-HG in tumor radioresistance and may provide a new perspective for overcoming tumor radioresistance and broaden our comprehension of the role of metabolites in tumor microenvironment.

11.
Environ Sci Technol ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995089

ABSTRACT

Short-term exposure to PM2.5 or O3 can increase mortality risk; however, limited studies have evaluated their interaction. A multicity time series study was conducted to investigate the synergistic effect of PM2.5 and O3 on mortality in China, using mortality data and high-resolution pollutant predictions from 272 cities in 2013-2015. Generalized additive models were applied to estimate associations of PM2.5 and O3 with mortality. Modification and interaction effects were explored by stratified analyses and synergistic indexes. Deaths attributable to PM2.5 and O3 were evaluated with or without modification of the other pollutant. The risk of total nonaccidental mortality increased by 0.70% for each 10 µg/m3 increase in PM2.5 when O3 levels were high, compared to 0.12% at low O3 levels. The effect of O3 on total nonaccidental mortality at high PM2.5 levels (1.26%) was also significantly higher than that at low PM2.5 levels (0.59%). Similar patterns were observed for cardiovascular or respiratory diseases. The relative excess risk of interaction and synergy index of PM2.5 and O3 on nonaccidental mortality were 0.69% and 1.31 with statistical significance, respectively. Nonaccidental deaths attributable to short-term exposure of PM2.5 or O3 when considering modification of the other pollutant were 28% and 31% higher than those without considering modification, respectively. Our results found synergistic effects of short-term coexposure to PM2.5 and O3 on mortality and suggested underestimations of attributable risks without considering their synergistic effects.

12.
Article in English | MEDLINE | ID: mdl-38995335

ABSTRACT

The Baihe River, a tributary of the Yellow River located in the Ngawa Tibetan and Qiang Autonomous Prefecture in Northern Sichuan, is surrounded by natural resources suitable for animal development. However, the impact of livestock activities water microbiome in this area remains unexplored. This study collected water samples from areas with captive yaks and sheep (NS and YS) and compared them with water samples from Hongyuan Baihe River. Through amplicon sequencing, we investigated the impact of livestock activities on aquatic microorganisms. Diversity analysis, significance analysis, and microbial phenotype prediction indicated a significant decrease in microbial community diversity and function in the NS and YS groups. Pathogenic microorganisms such as Bacteroidales and Thelebolaceae and antibiotic-resistant bacteria genes such as Flavobacteriales and Burkholderiaceae were significantly higher in livestock breeding areas. Additionally, bacteria adapted to acidification, hypoxia, and eutrophication (e.g., Acidobacteria, Flavobacteriales, Deltaproteobacteria, Rhodobacterales) were more abundant in these areas. Our results demonstrate that livestock activities significantly alter the structure and function of microbial communities in surrounding water bodies, deteriorating water quality.

13.
Crit Rev Anal Chem ; : 1-20, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978228

ABSTRACT

Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.

14.
Adv Sci (Weinh) ; : e2402578, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005234

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the leading causes of cancer deaths worldwide. Significantly activated uridine nucleotide and fatty acid metabolism in HCC cells promote malignant proliferation and immune evasion. Herein, it is demonstrated that the tripartite motif 65 (TRIM65) E3 ubiquitin-protein ligase, O-GlcNAcylated via O-GlcNAcylation transferase, is highly expressed in HCC and facilitated metabolic remodeling to promote the accumulation of products related to uracil metabolism and palmitic acid, driving the progression of HCC. Mechanistically, it is showed that TRIM65 mediates ubiquitylation at the K44 residue of neurofibromatosis type 2 (NF2), the key protein upstream of classical Hippo signaling. Accelerated NF2 degradation inhibits yes-associated protein 1 phosphorylation, inducing aberrant activation of related metabolic enzyme transcription, and orchestrating metabolic and immune advantages. In conclusion, these results reveal a critical role for the TRIM family molecule TRIM65 in supporting HCC cell survival and highlight the therapeutic potential of targeting its E3 ligase activity to alter the regulation of proteasomal degradation.

15.
Article in English | MEDLINE | ID: mdl-39007296

ABSTRACT

Tetracycline (TC) and Cu(II) coexist commonly in various waters, which may infiltrate into the subterranean environment through runoff and leaching, resulting in substantial ecological risks. However, the underlying mechanisms why Cu(II) affects the transport of TC in porous media remain to be further explored and supported by more evidence, especially the role of complexation. In this study, the transport of TC with coexisting Cu(II) was comprehensively explored with column experiments and density functional theory (DFT) calculation. At natural environmental concentrations, Cu(II) significantly inhibited the transport of TC in the quartz sand column. Cu(II) augmented the retention of TC in the column mainly via electrostatic force and complexation. The interaction between TC and TC-Cu complexes on the surface of SiO2 was investigated with first-principles calculations for the first time. There were strong van der Waals forces and coordination bonds on the surface of complexes and SiO2, leading to higher adsorption energy than that of TC and inhibiting its penetration. This study offers novel insights and theoretical framework for the transport of antibiotics in the presence of metal ions to better understand the fate of antibiotics in nature.

17.
Adv Healthc Mater ; : e2401567, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38962848

ABSTRACT

Copper is indispensable to organisms, while its homeostatic imbalance may interference normal cellular physiological processes and even induce cell death. Artificially regulating cellular copper content provides a viable strategy to activate antineoplastic effect. In light of this, a copper ions homeostasis perturbator (CuP-CL) with cinnamaldehyde (Cin) packaging and thermosensitive liposome coating is reported. Following laser exposure, the doping of Cu2+ in polydopamine initiates enhanced photothermal therapy (PTT) and unlocks the outer layer of liposome, leading to the release of copper ions and Cin in tumor microenvironment with mild acidity and high glutathione (GSH) levels. The liberative Cu2+ can evoke cuproptosis and chemodynamic therapy (CDT). Meanwhile, leveraging the merits of H2O2 supply and GSH consumption, Cin serves as a tumor microenvironment regulator to amplify Cu2+ mediated cuproptosis and CDT. Additionally, the positive feedback effects of "laser-triggered PTT, PTT accelerates reactive oxygen species (ROS) generation, ROS amplifies lipid peroxide (LPO) accumulation, LPO mediates heat shock proteins (HSPs) clearance, down-regulated HSPs promote PTT" entailed the overall benefit to therapeutic outcomes. Both in vitro and in vivo results corroborate the remarkable antineoplastic performance of CuP-CL by the synergy of cuproptosis/CDT/PTT. Collectively, based on the three-pronged approach, this work plots a viable multimodal regimen for cancer therapy.

18.
BMJ Open ; 14(7): e082404, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39002963

ABSTRACT

INTRODUCTION: The efficacy of multitarget neuroprotective drug DL-3-n-butylphthalide (NBP) in improving cognitive function has been confirmed in patients with vascular cognitive impairment without dementia. However, its efficacy in patients with symptomatic predementia phase of Alzheimer's disease remains uncertain. This study aims to evaluate the efficacy and safety of NBP in improving cognitive function in patients with mild cognitive impairment (MCI) through a clinical randomised controlled trail. METHODS AND ANALYSIS: This study is a 12-month, randomised, double-blind, placebo-controlled, multicentric trial, involving 270 patients with MCI. Subjects are randomly assigned to receive either NBP soft capsule (200 mg, three times per day) or placebo with an allocation ratio of 1:1. The efficacy and safety of NBP are assessed by comparing the results of neuropsychological, neuroimaging and laboratory tests between the two groups. The primary endpoint is the change in Alzheimer's Disease Assessment Scale-Cognitive Subscale after 12 months. All patients will be monitored for adverse events. ETHICS AND DISSEMINATION: This study involving human participants has been reviewed and approved by Ethics Committee of Xuan Wu Hospital (No.2017058). The participants provide their written informed consent to participate in this study. Results will be published in peer-reviewed medical journals and disseminated to healthcare professionals at local and international conferences. PROTOCOL VERSION: V 3.0, 3 September 2022. TRIAL REGISTRATION NUMBER: ChiCTR1800018362.


Subject(s)
Benzofurans , Cognitive Dysfunction , Neuroprotective Agents , Humans , Benzofurans/therapeutic use , Benzofurans/adverse effects , Cognitive Dysfunction/drug therapy , Double-Blind Method , Male , Aged , Female , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/adverse effects , Middle Aged , Treatment Outcome , Randomized Controlled Trials as Topic , Neuropsychological Tests , Cognition/drug effects , Multicenter Studies as Topic
19.
Nat Commun ; 15(1): 5962, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013901

ABSTRACT

Dual emission (DE) in nanoclusters (NCs) is considerably significant in the research and application of ratiometric sensing, bioimaging, and novel optoelectronic devices. Exploring the DE mechanism in open-shell NCs with doublet or quartet emissions remains challenging because synthesizing open-shell NCs is difficult due to their inherent instability. Here, we synthesize two dual-emissive M1Ag13(PFBT)6(TPP)7 (M = Pt, Pd; PFBT = pentafluorobenzenethiol; TPP = triphenylphosphine) NCs with a 7-electron open-shell configuration to reveal the DE mechanism. Both NCs comprise a crown-like M1Ag11 kernel with Pt or Pd in the center surrounded by five PPh3 ligands and two Ag(SR)3(PPh3) motifs. The combined experimental and theoretical studies revealed the origin of DE in Pt1Ag13 and Pd1Ag13. Specifically, the high-energy visible emission and the low-energy near-infrared emission arise from two distinct quartet excited states: the core-shell charge transfer and core-based states, respectively. Moreover, PFBT ligands are found to play an important role in the existence of DE, as its low-lying π* levels result in energetically accessible core-shell transitions. This novel report on the dual-quartet phosphorescent emission in NCs with an open-shell electronic configuration advances insights into the origin of dual-emissive NCs and promotes their potential application in magnetoluminescence and novel optoelectronic devices.

20.
Int J Mol Sci ; 25(11)2024 May 21.
Article in English | MEDLINE | ID: mdl-38891802

ABSTRACT

Soybean, a major source of oil and protein, has seen an annual increase in consumption when used in soybean-derived products and the broadening of its cultivation range. The demand for soybean necessitates a better understanding of the regulatory networks driving storage protein accumulation and oil biosynthesis to broaden its positive impact on human health. In this study, we selected a chromosome segment substitution line (CSSL) with high protein and low oil contents to investigate the underlying effect of donor introgression on seed storage through multi-omics analysis. In total, 1479 differentially expressed genes (DEGs), 82 differentially expressed proteins (DEPs), and 34 differentially expressed metabolites (DEMs) were identified in the CSSL compared to the recurrent parent. Based on Gene Ontology (GO) term analysis and the Kyoto Encyclopedia of Genes and Genomes enrichment (KEGG), integrated analysis indicated that 31 DEGs, 24 DEPs, and 13 DEMs were related to seed storage functionality. Integrated analysis further showed a significant decrease in the contents of the seed storage lipids LysoPG 16:0 and LysoPC 18:4 as well as an increase in the contents of organic acids such as L-malic acid. Taken together, these results offer new insights into the molecular mechanisms of seed storage and provide guidance for the molecular breeding of new favorable soybean varieties.


Subject(s)
Gene Expression Regulation, Plant , Glycine max , Seeds , Glycine max/genetics , Glycine max/metabolism , Seeds/genetics , Seeds/metabolism , Chromosomes, Plant/genetics , Gene Regulatory Networks , Plant Breeding/methods , Gene Expression Profiling/methods , Gene Ontology , Transcriptome/genetics , Multiomics
SELECTION OF CITATIONS
SEARCH DETAIL
...