Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 122
Filter
2.
Cardiovasc Diabetol ; 23(1): 148, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38685007

ABSTRACT

BACKGROUND: Glycemic control, as measured by glycosylated hemoglobin (HbA1c), is an important biomarker to evaluate diabetes severity and is believed to be associated with heart failure development. Type 2 diabetes mellitus (T2DM) and heart failure with reduced ejection fraction (HFrEF) commonly coexist, and the combination of these two diseases indicates a considerably poorer outcome than either disease alone. Therefore, glycemic control should be carefully managed. The present study aimed to explore the association between glycemic control and clinical outcomes, and to determine the optimal glycemic target in this specific population. METHODS: A total of 262 patients who underwent cardiac MRI were included and were split by HbA1c levels [HbA1c < 6.5% (intensive control), HbA1c 6.5-7.5% (modest control), and HbA1c > 7.5% (poor control)]. The biventricular volume and function, as well as left ventricular (LV) systolic strains in patients in different HbA1c categories, were measured and compared. The primary and secondary outcomes were recorded. The association of different HbA1c levels with adverse outcomes was assessed. RESULTS: Despite similar biventricular ejection fractions, both patients with intensive and poor glycemic control exhibited prominent deterioration of LV systolic strain in the longitudinal component (P = 0.004). After a median follow-up of 35.0 months, 55 patients (21.0%) experienced at least one confirmed endpoint event. Cox multivariable analysis indicated that both patients in the lowest and highest HbA1c categories exhibited a more than 2-fold increase in the risk for primary outcomes [HbA1c < 6.5%: hazard ratio (HR) = 2.42, 95% confidence interval (CI) = 1.07-5.45; P = 0.033; HbA1c > 7.5%: HR = 2.24, 95% CI = 1.01-4.99; P = 0.038] and secondary outcomes (HbA1c < 6.5%: HR = 2.84, 95% CI = 1.16-6.96; P = 0.022; HbA1c > 7.5%: HR = 2.65, 95% CI = 1.08-6.50; P = 0.038) compared with those in the middle HbA1c category. CONCLUSIONS: We showed a U-shaped association of glycemic control with clinical outcomes in patients with T2DM and HFrEF, with the lowest risk of adverse outcomes among patients with modest glycemic control. HbA1c between 6.5% and 7.5% may be served as the optimal hypoglycemic target in this specific population.


Subject(s)
Biomarkers , Blood Glucose , Diabetes Mellitus, Type 2 , Glycated Hemoglobin , Glycemic Control , Heart Failure , Predictive Value of Tests , Stroke Volume , Ventricular Function, Left , Ventricular Remodeling , Humans , Male , Female , Heart Failure/physiopathology , Heart Failure/blood , Heart Failure/diagnostic imaging , Glycated Hemoglobin/metabolism , Middle Aged , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/physiopathology , Aged , Blood Glucose/metabolism , Biomarkers/blood , Risk Factors , Retrospective Studies , Magnetic Resonance Imaging, Cine , Time Factors , Hypoglycemic Agents/therapeutic use , Risk Assessment , Prognosis
3.
J Med Genet ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38621993

ABSTRACT

BACKGROUND: As one of the most common congenital abnormalities in male births, cryptorchidism has been found to have a polygenic aetiology according to previous studies of common variants. However, little is known about genetic predisposition of rare variants for cryptorchidism, since rare variants have larger effective size on diseases than common variants. METHODS: In this study, a cohort of 115 Chinese probands with cryptorchidism was analysed using whole-genome sequencing, alongside 19 parental controls and 2136 unaffected men. Additionally, CRISPR-Cas9 editing of a conserved variant was performed in a mouse model, with MRI screening used to observe the phenotype. RESULTS: In 30 of 115 patients (26.1%), we identified four novel genes (ARSH, DMD, MAGEA4 and SHROOM2) affecting at least five unrelated patients and four known genes (USP9Y, UBA1, BCORL1 and KDM6A) with the candidate rare pathogenic variants affecting at least two cases. Burden tests of rare variants revealed the genome-wide significances for newly identified genes (p<2.5×10-6) under the Bonferroni correction. Surprisingly, novel and known genes were mainly found on X chromosome (seven on X and one on Y) and all rare X-chromosomal segregating variants exhibited a maternal inheritance rather than de novo origin. CRISPR-Cas9 mouse modelling of a splice donor loss variant in DMD (NC_000023.11:g.32454661C>G), which resides in a conserved site across vertebrates, replicated bilateral cryptorchidism phenotypes, confirmed by MRI at 4 and 10 weeks. The movement tests further revealed symptoms of Duchenne muscular dystrophy (DMD) in transgenic mice. CONCLUSION: Our results revealed the role of the DMD gene mutation in causing cryptorchidism. The results also suggest that maternal-X inheritance of pathogenic defects could have a predominant role in the development of cryptorchidism.

5.
Urol Oncol ; 42(4): 119.e17-119.e22, 2024 04.
Article in English | MEDLINE | ID: mdl-38383241

ABSTRACT

BACKGROUND: Bone metastasis (BM) is considered a poor prognostic factor of renal cell carcinoma (RCC). Confusion exists regarding how to deal with RCC patients with bone-only metastasis. PATIENTS AND METHODS: The clinical data of consecutive RCC patients with bone-only metastasis at Peking University Cancer Hospital between 2006 and 2018 were retrospectively collected and analyzed. RESULTS: Fifty-four eligible patients were screened from an RCC database of 1,878 metastatic patients. After a median follow-up of 43.6 m, 61.1% of the patients were presented with progression of prior BM or new BM. The progression-free survival (PFS) and overall survival (OS) was 16.2 m (95%CI: 11.4-21.0) and 65.2 m, respectively. For the 30 patients with oligo-metastasis (≤3 loci) and 24 ones with multiple-metastasis (>3 loci), the median OS was not reached and 42.0m (95%CI: 12.7-71.2) with statistical difference (P < 0.001). In the oligo-metastasis group, the median PFS of the 15 patients treated with local therapy and of the 13 patients treated with systemic therapy was 14.2 m (95%CI: 5.3-23.3) and 18.0 m (95%CI:15.4-20.6), respectively. In the multiple-metastasis group, the median PFS and OS of the 18 patients treated with systemic therapy was 16.6 m (95%CI: 7.5-25.7) and 63.9 m (95%CI: 21.8-106.0), respectively. Univariate analysis and multivariate analysis showed that the number of metastatic sites (oligo/multiple) and International Metastatic Renal Cell Carcinoma Database Consortium (IMDC) score, RCC pathological subtype were significantly associated with prognosis (P < 0.05). CONCLUSION: RCC patients with bone-only metastases have a favorable prognosis. The number of metastatic sites, IMDC, RCC pathological subtype could serve as survival predictors, which might provide clue of treatment modality.


Subject(s)
Bone Neoplasms , Carcinoma, Renal Cell , Kidney Neoplasms , Humans , Carcinoma, Renal Cell/pathology , Kidney Neoplasms/pathology , Retrospective Studies , Prognosis , Bone Neoplasms/secondary
6.
J Magn Reson Imaging ; 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38328865

ABSTRACT

BACKGROUND: Myocardial hypoxia has been demonstrated in many cardiomyopathies and is related to development of myocardial fibrosis. However, myocardial hypoxia and its association with myocardial fibrosis are understudied in Duchenne muscular dystrophy (DMD)-associated cardiomyopathy. PURPOSE: To evaluate myocardial hypoxia by oxygenation-sensitive (OS) cardiac magnetic resonance imaging, and further explore its association with fibrosis. STUDY TYPE: Prospective. SUBJECTS: Ninety-one DMD boys (8.78 ± 2.32) and 30 healthy boys (9.07 ± 2.30). FIELD STRENGTH/SEQUENCE: 3 T, Balanced steady-state free procession, Modified Look-Locker inversion recovery sequence and Single-shot phase-sensitive inversion recovery sequence. ASSESSMENT: Cardiac MRI data, including left ventricular functional, segmental native T1, and oxygenation signal-intensity (SI) according to AHA 17-segment model, were acquired. Patients were divided into LGE+ and LGE- groups. In patients with LGE, all segments were further classified as positive or negative segments by segmentally presence/absence of LGE. STATISTICAL TESTS: Variables were compared using Student's t, Wilcoxon, Kruskal-Wallis test and one-way analysis of variance. Bivariate Pearson or Spearman correlation were calculated to determine association between oxygenation SI and native T1. Variables with P < 0.10 in the univariable analysis were included in multivariable model. Receiver operating characteristic analysis was used to assess the performance of OS in diagnosing myocardial hypoxia. RESULTS: The myocardial oxygenation SI of DMD was significantly decreased in all segments compared with normal controls, and more obvious in the LGE+ segments (0.46 ± 0.03 vs. 0.52 ± 0.03). For patients with and without LGE, myocardial oxygenation SI were significantly negatively correlated with native T1 in all segments (r = -0.23 to -0.42). The inferolateral oxygenation SI was a significant independent associator of LGE presence (adjusted OR = 0.900). DATA CONCLUSION: Myocardial hypoxia evaluated by the OS-Cardiac-MRI indeed occurs in DMD and associate with myocardial fibrosis, which might be used as a biomarker in assessing myocardial damage in DMD. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.

8.
J Magn Reson Imaging ; 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38353473

ABSTRACT

BACKGROUND: Patients with restrictive cardiomyopathy (RCM) have impaired diastolic filling and hemodynamic congestion. Pulmonary transit time (PTT) and pulmonary blood volume index (PBVi) reflect the hemodynamic status, but the relationship with left ventricle (LV) dysfunction remains unclear. PURPOSE: To evaluate the PTT and PBVi in RCM patients, the association with diastolic dysfunction and LV deformation, and the effects on the occurrence of major adverse cardiac events (MACE) in RCM patients. STUDY TYPE: Retrospective. POPULATION: 137 RCM patients (88 men, age 58.80 ± 10.83 years) and 68 age- and sex-matched controls (46 men, age 57.00 ± 8.59 years). FIELD STRENGTH/SEQUENCE: 3.0T/Balanced steady-state free precession sequence, recovery prepared echo-planar imaging sequence, and phase-sensitive inversion recovery sequence. ASSESSMENT: The LV function and peak strain (PS) parameters were measured. The PTT was calculated and corrected by heart rate (PTTc). The PBVi was calculated as the product of PTTc and RV stroke volume index. STATISTICAL TESTS: Chi-squared test, student's t-test, Mann-Whitney U test, Pearson's or Spearman's correlation, multivariate linear regression, Kaplan-Meier survival analysis, and Cox regression models analysis. A P-value <0.05 was considered statistically significant. RESULTS: The PTTc showed a significant correlation with the E/A ratio (r = 0.282), and PBVi showed a significant correlation with the E/e' ratio, E/A ratio, and diastolic dysfunction stage (r = 0.222, 0.320, and 0.270). PTTc showed an independent association with LVEF, LV circumferential PS, and LV longitudinal PS (ß = 0.472, 0.299, and 0.328). In Kaplan-Meier analysis, higher PTTc and PBVi were significantly associated with MACE. In multivariable Cox regression analysis, PTTc was a significantly independent predictor of the MACE in combination with both cardiac MRI functional and tissue parameters (hazard ratio: 1.23/1.32, 95% confidence interval: 1.10-1.42/1.20-1.46). DATA CONCLUSION: PTTc and PBVi are associated with diastolic dysfunction and deteriorated LV deformation, and PTTc independently predicts MACE in patients with RCM. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY: Stage 2.

9.
Cardiovasc Diabetol ; 23(1): 9, 2024 01 06.
Article in English | MEDLINE | ID: mdl-38184602

ABSTRACT

BACKGROUND: Microvascular pathology is one of the main characteristics of diabetic cardiomyopathy; however, the early longitudinal course of diabetic microvascular dysfunction remains uncertain. This study aimed to investigate the early dynamic changes in left ventricular (LV) microvascular function in diabetic pig model using the cardiac magnetic resonance (CMR)-derived quantitative perfusion technique. METHODS: Twelve pigs with streptozotocin-induced diabetes mellitus (DM) were included in this study, and longitudinal CMR scanning was performed before and 2, 6, 10, and 16 months after diabetic modeling. CMR-derived semiquantitative parameters (upslope, maximal signal intensity, perfusion index, and myocardial perfusion reserve index [MPRI]) and fully quantitative perfusion parameters (myocardial blood flow [MBF] and myocardial perfusion reserve [MPR]) were analyzed to evaluate longitudinal changes in LV myocardial microvascular function. Pearson correlation was used to analyze the relationship between LV structure and function and myocardial perfusion function. RESULTS: With the progression of DM duration, the upslope at rest showed a gradually increasing trend (P = 0.029); however, the upslope at stress and MBF did not change significantly (P > 0.05). Regarding perfusion reserve function, both MPRI and MPR showed a decreasing trend with the progression of disease duration (MPRI, P = 0.001; MPR, P = 0.042), with high consistency (r = 0.551, P < 0.001). Furthermore, LV MPR is moderately associated with LV longitudinal strain (r = - 0.353, P = 0.022), LV remodeling index (r = - 0.312, P = 0.033), fasting blood glucose (r = - 0.313, P = 0.043), and HbA1c (r = - 0.309, P = 0.046). Microscopically, pathological results showed that collagen volume fraction increased gradually, whereas no significant decrease in microvascular density was observed with the progression of DM duration. CONCLUSIONS: Myocardial microvascular reserve function decreased gradually in the early stage of DM, which is related to both structural (but not reduced microvascular density) and functional abnormalities of microvessels, and is associated with increased blood glucose, reduced LV deformation, and myocardial remodeling.


Subject(s)
Diabetes Mellitus, Experimental , Ventricular Dysfunction, Left , Animals , Swine , Blood Glucose , Heart , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Perfusion
10.
Cardiovasc Diabetol ; 23(1): 28, 2024 01 13.
Article in English | MEDLINE | ID: mdl-38218882

ABSTRACT

BACKGROUND: Sarcopenia is frequently found in patients with heart failure with reduced ejection fraction (HFrEF) and is associated with reduced exercise capacity, poor quality of life and adverse outcomes. Recent evidence suggests that axial thoracic skeletal muscle size could be used as a surrogate to assess sarcopenia in HFrEF. Since diabetes mellitus (DM) is one of the most common comorbidities with HFrEF, we aimed to explore the potential association of axial thoracic skeletal muscle size with left ventricular (LV) remodeling and determine its prognostic significance in this condition. METHODS: A total of 243 diabetes patients with HFrEF were included in this study. Bilateral axial thoracic skeletal muscle size was obtained using cardiac MRI. Patients were stratified by the tertiles of axial thoracic skeletal muscle index (SMI). LV structural and functional indices, as well as amino-terminal pro-B-type natriuretic peptide (NT-proBNP), were measured. The determinants of elevated NT-proBNP were assessed using linear regression analysis. The associations between thoracic SMI and clinical outcomes were assessed using a multivariable Cox proportional hazards model. RESULTS: Patients in the lowest tertile of thoracic SMI displayed a deterioration in LV systolic strain in three components, together with an increase in LV mass and a heavier burden of myocardial fibrosis (all P < 0.05). Moreover, thoracic SMI (ß = -0.25; P < 0.001), rather than body mass index (ß = -0.04; P = 0.55), was independently associated with the level of NT-proBNP. The median follow-up duration was 33.6 months (IQR, 20.4-52.8 months). Patients with adverse outcomes showed a lower thoracic SMI (40.1 [34.3, 47.9] cm2/m2 vs. 45.3 [37.3, 55.0] cm2/m2; P < 0.05) but a similar BMI (P = 0.76) compared with those without adverse outcomes. A higher thoracic SMI indicated a lower risk of adverse outcomes (hazard ratio: 0.96; 95% confidence interval: 0.92-0.99; P = 0.01). CONCLUSIONS: With respect to diabetes patients with HFrEF, thoracic SMI is a novel alternative for evaluating muscle wasting in sarcopenia that can be obtained by a readily available routine cardiac MRI protocol. A reduction in thoracic skeletal muscle size predicts poor outcomes in the context of DM with HFrEF.


Subject(s)
Diabetes Mellitus , Heart Failure , Sarcopenia , Ventricular Dysfunction, Left , Humans , Heart Failure/diagnostic imaging , Sarcopenia/diagnostic imaging , Sarcopenia/epidemiology , Quality of Life , Biomarkers , Stroke Volume/physiology , Natriuretic Peptide, Brain , Magnetic Resonance Imaging , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Peptide Fragments , Muscle, Skeletal/diagnostic imaging , Diabetes Mellitus/diagnosis , Diabetes Mellitus/epidemiology
11.
Osteoporos Int ; 35(6): 997-1005, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38277031

ABSTRACT

Fractures often cause irreversible harm in Duchenne muscular dystrophy (DMD). This study investigated the trajectory of bone mineral density (BMD) using group-based trajectory modeling and identified that BMD acts as an early-stage indicator of clinically significant bone fragility. The greater the early-stage BMD, the better the 4-year bone health outcome. PURPOSE: Most Duchenne muscular dystrophy (DMD) children suffer bone loss after long-term glucocorticoid (GC) exposure, which induces scoliosis and fragility fractures. To assess the BMD progression pattern and individual medical risk markers for these phenotypes in young ambulatory boys with DMD, and provide evidence-based suggestions for clinical management of bone health. METHODS: A retrospective longitudinal cohort study of 153 boys with DMD in West China Second University Hospital (2016-2023) was performed. Group-based trajectory modeling was used to study the BMD progression pattern, and potential predictors were further analyzed by logistic regression and survival analysis. RESULTS: One hundred and fifty-three participants were included, 71 of which had more than 3 BMD records. Three BMD trajectories were identified. Baseline BMD and age-started GC and were independent predictors of trajectory attribution. The median survival time of the first observation of low BMD in GC-treated DMD boys was 5.32 (95% CI 4.05-6.59) years, and a significant difference was tested (P < 0.001) among the three trajectory groups. CONCLUSION: BMD may serve as a novel early indicating marker for monitoring bone fragility for DMD. We proposed a bone health risk stratification through BMD progression trajectory that allows us to adapt the osteoporosis warning sign in DMD from a fixed threshold approach to a more individualized strategy, where baseline BMD and age of glucocorticoid initiation can provide an earlier prediction of bone loss. Better management of primary BMD may be able to delay or avoid the onset of adverse bone health outcomes in the fifth year in children with DMD.


Subject(s)
Bone Density , Disease Progression , Glucocorticoids , Muscular Dystrophy, Duchenne , Osteoporosis , Humans , Muscular Dystrophy, Duchenne/physiopathology , Muscular Dystrophy, Duchenne/drug therapy , Muscular Dystrophy, Duchenne/complications , Male , Bone Density/drug effects , Bone Density/physiology , Glucocorticoids/adverse effects , Glucocorticoids/therapeutic use , Child , Retrospective Studies , Longitudinal Studies , Child, Preschool , Osteoporosis/physiopathology , Osteoporosis/chemically induced , Adolescent , Risk Factors , Osteoporotic Fractures/etiology , Osteoporotic Fractures/physiopathology , Osteoporotic Fractures/chemically induced , Absorptiometry, Photon/methods , Risk Assessment/methods
12.
Br J Radiol ; 97(1153): 249-257, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263818

ABSTRACT

OBJECTIVES: The current study aimed to assess myocardial microcirculation dysfunction via cardiac magnetic resonance (CMR) first-pass perfusion imaging in children with Duchenne muscular dystrophy (DMD). METHODS: In total, 67 children with DMD and 15 controls who underwent contrast-enhanced CMR first-pass perfusion imaging were enrolled in this study. CMR first-pass perfusion and late gadolinium enhancement (LGE) sequences were acquired. Further, the global, regional, and coronary artery distribution area perfusion indexes (PI), upslope (%BL), maximum signal intensity (MaxSI), time to maximum signal intensity (TTM), and baseline SI were analysed. The perfusion parameters of the LGE positive (+), LGE negative (-), and control groups were compared. Pearson correlation analysis was performed to assess the association between myocardial microcirculation and conventional cardiac function and LGE parameters. RESULTS: The LGE+ group had a significantly lower global and apical-ventricular MaxSI than the control group (all P < .05). The left anterior descending arterial (LAD), left circumflex coronary arterial (LCX), and right coronary arterial (RCA) segments of the LGE+ group had a lower upslope and MaxSI than those of the control group (all P < .05). The LAD segments of the LGE- group had a lower MaxSI than those of the control group (41.10 ± 11.08 vs 46.36 ± 13.04; P < .001). The LCX segments of the LGE- group had a lower PI and upslope than those of the control group (11.05 ± 2.84 vs 12.46 ± 2.82; P = .001; 59.31 ± 26.76 vs 68.57 ± 29.99; P = .002). Based on the correlation analysis, the upslope, MaxSI, and TTM were correlated with conventional cardiac function and LGE extent. CONCLUSIONS: Paediatric patients with DMD may present with microvascular dysfunction. This condition may appear before LGE and may be correlated with coronary artery blood supply and LGE extent. ADVANCES IN KNOWLEDGE: First-pass perfusion parameters may reveal the status of myocardial microcirculation and reflect the degree of myocardial injury at an earlier time in DMD patients. Perfusion parameters should be analysed not only via global or base, middle, and apical segments but also according to coronary artery distribution area, which may detect myocardial microvascular dysfunction at an earlier stage, in DMD patients with LGE-.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Child , Contrast Media , Gadolinium , Magnetic Resonance Spectroscopy , Perfusion Imaging
13.
Pediatr Radiol ; 54(2): 208-217, 2024 02.
Article in English | MEDLINE | ID: mdl-38267713

ABSTRACT

BACKGROUND: The development of left ventricular (LV) remodeling has been associated with an increased cardiovascular risk and cardiogenic death, and different patterns of remodeling result in varying levels of prognosis. OBJECTIVE: To investigate the association between different patterns of LV remodeling and clinical outcomes in the preclinical stage of patients with Duchenne muscular dystrophy (DMD). MATERIALS AND METHODS: A total of 148 patients with DMD and 43 sex- and age-matched healthy participants were enrolled. We used the four-quadrant analysis method to investigate LV remodeling based on cardiac magnetic resonance (MR) imaging. Kaplan-Meier curves were generated to illustrate the event-free survival probability stratified by the LV remodeling pattern. Cox regression models were constructed and compared to evaluate the incremental predictive value of the LV remodeling pattern. RESULTS: During the median follow-up period of 2.2 years, all-cause death, cardiomyopathy, and ventricular arrhythmia occurred in 5, 35, and 7 patients, respectively. LV concentric hypertrophy (hazard ratio 2.91, 95% confidence interval 1.47-5.75, P=0.002) was an independent predictor of composite endpoint events. Compared to the model without LV concentric hypertrophy, the model with LV concentric hypertrophy had significant incremental predictive value (chi-square value 33.5 vs. 25.2, P=0.004). CONCLUSION: Age and late gadolinium enhancement positivity were positively correlated with clinical outcomes according to the prediction models. LV concentric hypertrophy was also an independent predictor for risk stratification and provided incremental value for predicting clinical outcomes in the preclinical stage of patients with DMD.


Subject(s)
Contrast Media , Muscular Dystrophy, Duchenne , Humans , Prospective Studies , Muscular Dystrophy, Duchenne/complications , Muscular Dystrophy, Duchenne/diagnostic imaging , Gadolinium , Magnetic Resonance Imaging/methods , Hypertrophy, Left Ventricular , Risk Assessment , Magnetic Resonance Imaging, Cine/methods , Ventricular Remodeling , Stroke Volume , Predictive Value of Tests
14.
Acta Biomater ; 176: 367-378, 2024 03 01.
Article in English | MEDLINE | ID: mdl-38244659

ABSTRACT

Early detection of myocardial fibrosis in diabetic cardiomyopathy (DCM) has significant clinical implications for diabetes management. In this study, we identified matrix metalloproteinase 2 (MMP2) as a potential biomarker for early fibrosis detection. Based on this finding, we designed a dual-targeting nanoparticle CHP-SPIO-ab MMP2 to specifically target myocardiopathy and MMP2, enabling sensitive fibrosis detection using magnetic resonance imaging (MRI). Our results demonstrate that collagen hyperplasia (early fiber formation) begins to develop in diabetic mice at 12 weeks old, with observable fibrosis occurring at 16 weeks old. Additionally, MMP2 expression significantly up-regulates around collagen starting from 12 weeks of age. T2 MRI analysis revealed significant T2% enhancement in the hearts of 12-week-old diabetic mice following administration of the CHP-SPIO-ab MMP2 probe, indicating noninvasive detection of fiber formation. Furthermore, after fibrosis treatment, a reduction in T2% signal was observed in the hearts of 16-week-old diabetic mice. These findings were supported by Sirius red and Prussian blue staining techniques. Overall, our study presents a promising strategy for early identification of myocardial fibrosis. STATEMENT OF SIGNIFICANCE: Myocardial damage typically exhibits irreversibility, underscoring the paramount importance of early fibrosis diagnosis. However, the clinical used T1 mapping for fibrosis detection still exhibits limitations in terms of sensitivity. Therefore, it is imperative to develop highly sensitive strategies for early cardiac fibrosis detection. Here, we investigated the development of myocardial fibrosis in diabetic mice, and designed a highly sensitive probe that specifically targets cardiomyopathy and high expression of MMP2 for the early diagnosis of fibrosis. The probe enables non-invasive detection of abnormalities through MRI imaging as soon as fiber deposition appear, which can be detected earlier than T1 mapping. This advancement holds great potential for clinical diagnosis of myocardial fibrosis using cardiac magnetic resonance.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Cardiomyopathies , Ferric Compounds , Mice , Animals , Matrix Metalloproteinase 2/metabolism , Diabetes Mellitus, Experimental/metabolism , Myocardium/metabolism , Diabetic Cardiomyopathies/diagnostic imaging , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/pathology , Fibrosis , Collagen/metabolism , Early Diagnosis
15.
Quant Imaging Med Surg ; 14(1): 736-748, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38223028

ABSTRACT

Background: Epicardial adipose tissue (EAT) contributes to inflammation and fibrosis of the neighboring myocardial tissue via paracrine signaling. In this retrospective study, we investigated the abnormal changes in the amount of EAT in male children with Duchenne muscular dystrophy (DMD) using cardiac magnetic resonance (CMR) imaging. Furthermore, we constructed and validated a nomogram including EAT-related CMR imaging parameter for predicting the occurrence of myocardial fibrosis in patients with DMD. Methods: This study enrolled 283 patients with DMD and 57 healthy participants who underwent CMR acquisitions to measure the quantitative parameters of EAT, pericardial adipose tissue (PAT), paracardial adipose tissue, and subcutaneous adipose tissue. Late gadolinium enhancement (LGE) was performed to confirm myocardial fibrosis in patients with DMD. The DMD group consisted of 200 patients from institution 1 (the ratio of the training set and the internal validation set was 7:3) and 83 patients from four other institutions (the external validation set). Logistic and least absolute shrinkage and selection operator (LASSO) regression was used to select the optimal predictors and to develop and validate the nomogram model predicting LGE risk in the training set, internal validation set, and external validation set. Results: Compared with those in healthy controls, some regional EAT thicknesses, areas, and global volumes were significantly higher in patients with DMD, and 41.7% of patients with DMD showed positive LGE. These LGE-positive patients with DMD showed significantly higher EAT volume (median 23.9 mL/m3; P<0.001) and PAT volume (median 31.8 mL/m3; P<0.001) compared with the LGE-negative patients with DMD. Age [odds ratio (OR) 2.0; P<0.001], body fat percentage (OR 1.3; P<0.001), and EAT volume (OR 1.4; P<0.001) were independently associated with positive LGE in the training set. The interactive dynamic nomogram showed superior prediction performance, with a high degree of the calibration, discrimination, and clinical net benefit in the training and validation of the DMD datasets. The area under the curve (AUC) values of the nomogram in the training set, internal validation set, and external validation set were 0.95 [95% confidence interval (CI): 0.91-0.98], 0.97 (95% CI: 0.92-0.99), and 0.95 (95% CI: 0.91-0.99), respectively. Conclusions: The onset of LGE-based myocardial fibrosis was associated with EAT volume in patients with DMD. Additionally, the nomogram with EAT volumes showed superior performance in patients with DMD for predicting the occurrence of myocardial fibrosis.

16.
J Magn Reson Imaging ; 59(5): 1832-1840, 2024 May.
Article in English | MEDLINE | ID: mdl-37681476

ABSTRACT

BACKGROUND: Cardiac MRI feature-tracking (FT) with breath-holding (BH) cine balanced steady state free precession (bSSFP) imaging is well established. It is unclear whether FT-strain measurements can be reliably derived from free-breathing (FB) compressed sensing (CS) bSSFP imaging. PURPOSE: To compare left ventricular (LV) strain analysis and image quality of an FB CS bSSFP cine sequence with that of a conventional BH bSSFP sequence in children. STUDY TYPE: Prospective. SUBJECTS: 40 children able to perform BHs (cohort 1 [12.1 ± 2.2 years]) and 17 children unable to perform BHs (cohort 2 [5.2 ± 1.8 years]). FIELD STRENGTH/SEQUENCE: 3T, bSSFP sequence with and without CS. ASSESSMENT: Acquisition times and image quality were assessed. LV myocardial deformation parameters were compared between BH cine and FB CS cine studies in cohort 1. Strain indices and image quality of FB CS cine studies were also assessed in cohort 2. Intraobserver and interobserver variability of strain parameters was determined. STATISTICAL TESTS: Paired t-test, Wilcoxon signed-rank test, intraclass correlation coefficient (ICC), and Bland-Altman analysis. A P-value <0.05 was considered statistically significant. RESULTS: In cohort 1, the mean acquisition time of the FB CS cine study was significantly lower than for conventional BH cine study (15.6 s vs. 209.4 s). No significant difference were found in global circumferential strain rate (P = 0.089), global longitudinal strain rate (P = 0.366) and EuroCMR image quality scores (P = 0.128) between BH and FB sequences in cohort 1. The overall image quality score of FB CS cine in cohort 2 was 3.5 ± 0.5 with acquisition time of 14.7 ± 2.1 s. Interobserver and intraobserver variabilities were good to excellent (ICC = 0.810 to 0.943). DATA CONCLUSION: FB CS cine imaging may be a promising alternative technique for strain assessment in pediatric patients with poor BH ability. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 1.


Subject(s)
Heart , Ventricular Function, Left , Humans , Child , Prospective Studies , Heart Ventricles/diagnostic imaging , Magnetic Resonance Imaging , Magnetic Resonance Imaging, Cine/methods , Reproducibility of Results
17.
Orphanet J Rare Dis ; 18(1): 388, 2023 Dec 11.
Article in English | MEDLINE | ID: mdl-38082428

ABSTRACT

BACKGROUND: Gadolinium-enhanced cardiovascular magnetic resonance (CMR) is the most widely used approach for diagnosing myocardial fibrosis with late gadolinium enhancement (LGE) in cardiomyopathy associated with Duchenne muscular dystrophy. Given the limitations and safety of gadolinium use, we wanted to develop and evaluate multi-parametric pre-contrast CMR models for the diagnosis of LGE and investigate whether they could be utilised as surrogates for LGE in DMD patients. METHODS: A total of 136 DMD patients were prospectively recruited and separated into LGE - and LGE + groups. In the first subset of patients (derivation cohort), regression models for the diagnosis of LGE were built by logistic regression using pre-contrast sequence parameters. In a validation cohort of other patients, the models' performances were evaluated. RESULTS: EF, native T1 and longitudinal strain alone, as well as their combinations form seven models. The model that included EF, native T1 and longitudinal strain had the best diagnostic value, but there was no significant difference in diagnostic accuracy among the other models except EF. In the validation cohort, the diagnosis outcomes of models were moderate consistent with the existence of LGE. The longitudinal strain outperformed the other models in terms of diagnostic value (sensitivity: 83.33%, specificity: 54.55%). CONCLUSIONS: Pre-contrast sequences have a moderate predictive value for LGE. Thus, pre-contrast parameters may be considered only in a specific subset of DMD patients who cannot cooperate for long-time examinations and have contradiction of contrast agent to help predict the presence of LGE. TRIAL REGISTRATION NUMBER (TRN): ChiCTR1800018340 DATE OF REGISTRATION: 20180107.


Subject(s)
Cardiomyopathies , Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/diagnostic imaging , Contrast Media , Gadolinium , Cardiomyopathies/diagnostic imaging , Cardiomyopathies/complications , Fibrosis , Magnetic Resonance Spectroscopy , Myocardium/pathology , Ventricular Function, Left
18.
Bladder (San Franc) ; 10: e21200012, 2023.
Article in English | MEDLINE | ID: mdl-38155921

ABSTRACT

Urothelial carcinoma (UC) represents a common malignancy of the urinary system that can involve the kidneys, ureter, bladder, and urethra. Advanced/metastatic UC (mUC) tends to have a poor prognosis. UC ranks third in terms of human epidermal growth factor receptor 2 (HER2) overexpression among all tumors. However, multiple studies found that, unlike breast cancer, variable degrees of HER2 positivity and poor consistency between HER2 protein overexpression and gene amplification have been found. Trials involving trastuzumab, pertuzumab, lapatinib, afatinib, and neratinib have failed to prove their beneficial effect in patients with HER2-positive mUC, and a clinical trial on T-DM1 (trastuzumab emtansine) was terminated prematurely because of the adverse reactions. However, a phase II trial showed that RC48-ADC was effective. In this review, we provided an in-depth overview of the advances in the research regarding HER2-targeted therapy and the role of HER2 in mUC. Furthermore, we also discussed the prospects of potential strategies aimed at overcoming anti-HER2 resistance, and summarize the novel anti-HER2 approaches for the management of mUC used in recent clinical trials.

19.
Cardiovasc Diabetol ; 22(1): 317, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37985989

ABSTRACT

BACKGROUND: Diabetes mellitus (DM) is the most common metabolic disease worldwide and a major risk factor for adverse cardiovascular events, while the additive effects of DM on left ventricular (LV) deformation in the restrictive cardiomyopathy (RCM) cohort remain unclear. Accordingly, we aimed to investigate the additive effects of DM on LV deformation in patients with RCM. MATERIALS AND METHODS: One hundred thirty-six RCM patients without DM [RCM(DM-)], 46 with DM [RCM (DM+)], and 66 age- and sex-matched control subjects who underwent cardiac magnetic resonance (CMR) scanning were included. LV function, late gadolinium enhancement (LGE) type, and LV global peak strains (including radial, circumferential, and longitudinal directions) were measured. The determinant of reduced LV global myocardial strain for all RCM patients was assessed using multivariable linear regression analyses. The receiver operating characteristic curve (ROC) was performed to illustrate the relationship between DM and decreased LV deformation. RESULTS: Compared with the control group, RCM (DM-) and RCM(DM+) patients presented increased LV end-diastolic index and end-systolic volume index and decreased LV ejection fraction. LV GPS in all three directions and longitudinal PDSR progressively declined from the control group to the RCM(DM-) group to the RCM(DM+) group (all p < 0.05). DM was an independent determinant of impaired LV GPS in the radial, circumferential, and longitudinal directions and longitudinal PDSR (ß = - 0.217, 0.176, 0.253, and - 0.263, all p < 0.05) in RCM patients. The multiparameter combination, including DM, showed an AUC of 0.81(95% CI 0.75-0.87) to predict decreased LV GLPS and an AUC of 0.69 (95% CI 0.62-0.76) to predict decreased LV longitudinal PDSR. CONCLUSIONS: DM may have an additive deleterious effect on LV dysfunction in patients with RCM, especially diastolic dysfunction in RCM patients, indicating the importance of early identification and initiation of treatment of DM in patients with RCM.


Subject(s)
Cardiomyopathies , Cardiomyopathy, Restrictive , Diabetes Mellitus , Ventricular Dysfunction, Left , Humans , Ventricular Function, Left , Cardiomyopathy, Restrictive/complications , Contrast Media , Gadolinium , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/etiology , Stroke Volume , Diabetes Mellitus/diagnosis , Magnetic Resonance Imaging, Cine/adverse effects
20.
Pediatr Radiol ; 53(13): 2672-2682, 2023 12.
Article in English | MEDLINE | ID: mdl-37889296

ABSTRACT

BACKGROUND: Quantitative magnetic resonance imaging (MRI) is considered an objective biomarker of Duchenne muscular dystrophy (DMD), but the longitudinal progression of MRI biomarkers in gluteal muscle groups and their predictive value for future motor function have not been described. OBJECTIVE: To explore MRI biomarkers of the gluteal muscle groups as predictors of motor function decline in DMD by characterizing the progression over 12 months. MATERIALS AND METHODS: A total of 112 participants with DMD were enrolled and underwent MRI examination of the gluteal muscles to determine fat fraction and longitudinal relaxation time (T1). Investigations were based on gluteal muscle groups including flexors, extensors, adductors, and abductors. The North Star Ambulatory Assessment and timed functional tests were performed. All participants returned for follow-up at an average of 12 months and were divided into two subgroups (functional stability/decline groups) based on changes in timed functional tests. Univariable and multivariable logistic regression methods were used to explore the risk factors associated with future motor function decline. RESULTS: For the functional decline group, all T1 values decreased, while fat fraction values increased significantly over 12 months (P<0.05). For the functional stability group, only the fat fraction of the flexors and abductors increased significantly over 12 months (P<0.05). The baseline T1 value was positively correlated with North Star Ambulatory Assessment and negatively correlated with timed functional tests at the 12-month follow-up (P<0.001), while the baseline fat fraction value was negatively correlated with North Star Ambulatory Assessment and positively correlated with timed functional tests at the 12-month follow-up (P<0.001). Multivariate regression showed that increased fat fraction of the abductors was associated with future motor function decline (model 1: odds ratio [OR]=1.104, 95% confidence interval [CI]: 1.026~1.187, P=0.008; model 2: OR=1.085, 95% CI: 1.013~1.161, P=0.019), with an area under the curve of 0.874. CONCLUSION: Fat fraction of the abductors is a powerful predictor of future motor functional decline in DMD patients at 12 months, underscoring the importance of focusing early on this parameter in patients with DMD.


Subject(s)
Muscular Dystrophy, Duchenne , Humans , Muscular Dystrophy, Duchenne/diagnostic imaging , Muscular Dystrophy, Duchenne/pathology , Cohort Studies , Muscle, Skeletal/diagnostic imaging , Magnetic Resonance Imaging/methods , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...