Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 146(22): 224305, 2017 Jun 14.
Article in English | MEDLINE | ID: mdl-29166047

ABSTRACT

Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C2v symmetry with a significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 s-1).

2.
J Polym Sci B Polym Phys ; 54(1): 98-103, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-27867256

ABSTRACT

We recently demonstrated Solvent Immersion Imprint Lithography (SIIL), a rapid benchtop microsystem prototyping technique, including polymer functionalization, imprinting and bonding. Here, we focus on the realization of planar polymer sensors using SIIL through simple solvent immersion without imprinting. We describe SIIL's impregnation characteristics, including an inherent mechanism that not only achieves practical doping concentrations, but their unexpected 2-fold enhancement compared to the immersion solution. Subsequently, we developed and characterized optical sensors for detecting molecular O2. To this end, a substantially high dynamic range is reported, including its control through the immersion duration, a manifestation of SIIL's modularity. Overall, SIIL exhibits the potential of improving the operating characteristics of polymer sensors, while significantly accelerating their prototyping, as it requires a few seconds of processing and no need for substrates or dedicated instrumentation. These are critical for O2 sensing as probed by way of example here, as well as any polymer permeable reactant.

3.
Lab Chip ; 14(12): 2072-80, 2014 Jun 21.
Article in English | MEDLINE | ID: mdl-24789571

ABSTRACT

We present Solvent Immersion Imprint Lithography (SIIL), a technique for polymer functionalization and microsystem prototyping. SIIL is based on polymer immersion in commonly available solvents. This was experimentally and computationally analyzed, uniquely enabling two practical aspects. The first is imprinting and bonding deep features that span the 1 to 100 µm range, which are unattainable with existing solvent-based methods. The second is a functionalization scheme characterized by a well-controlled, 3D distribution of chemical moieties. SIIL is validated by developing microfluidics with embedded 3D oxygen sensors and microbioreactors for quantitative metabolic studies of a thermophile anaerobe microbial culture. Polystyrene (PS) was employed in the aforementioned applications; however all soluble polymers - including inorganic ones - can be employed with SIIL under no instrumentation requirements and typical processing times of less than two minutes.


Subject(s)
Flavobacterium , Microfluidic Analytical Techniques , Polystyrenes/chemistry , Shewanella , Solvents/chemistry , Anaerobiosis , Flavobacterium/cytology , Flavobacterium/growth & development , Shewanella/cytology , Shewanella/growth & development
4.
J Chem Phys ; 127(6): 064306, 2007 Aug 14.
Article in English | MEDLINE | ID: mdl-17705595

ABSTRACT

The photolysis of pyrrole has been studied in a molecular beam at wavelengths of 250, 240, and 193.3 nm, using two different carrier gases, He and Xe. A broad bimodal distribution of H-atom fragment velocities has been observed at all wavelengths. Near threshold at both 240 and 250 nm, sharp features have been observed in the fast part of the H-atom distribution. Under appropriate molecular beam conditions, the entire H-atom loss signal from the photolysis of pyrrole at both 240 and 250 nm (including the sharp features) disappear when using Xe as opposed to He as the carrier gas. We attribute this phenomenon to cluster formation between Xe and pyrrole, and this assumption is supported by the observation of resonance enhanced multiphoton ionization spectra for the (Xe...pyrrole) cluster followed by photofragmentation of the nascent cation cluster. Ab initio calculations are presented for the ground states of the neutral and cationic (Xe...pyrrole) clusters as a means of understanding their structural and energetic properties.


Subject(s)
Light , Photochemistry/methods , Photolysis , Pyrroles/chemistry , Xenon/chemistry , Cations , Chemistry, Physical/methods , Cluster Analysis , Electrons , Helium/chemistry , Hydrogen/chemistry , Models, Theoretical , Molecular Conformation , Photons
5.
J Chem Phys ; 125(14): 141102, 2006 Oct 14.
Article in English | MEDLINE | ID: mdl-17042571

ABSTRACT

We report converged quantum statistical mechanical simulations of liquid water with the Thole-type Model (version 2.1), Flexible, polarizable (TTM2.1-F) interaction potential for water. Simulations of total length of 600 ps with a 0.05 fs time step for a periodic unit cell of 256 molecules with up to 32 replicas per atom suggest that the quantum effects contribute 1.01+/-0.02 kcal/mol to the liquid enthalpy of formation at 298.15 K. They furthermore demonstrate for the first time a quantitative agreement with experiment for the heights and broadening of the intramolecular OH and HH peaks in the radial distribution functions.

6.
J Phys Chem A ; 110(21): 6886-97, 2006 Jun 01.
Article in English | MEDLINE | ID: mdl-16722704

ABSTRACT

Although heterogeneous chemistry on surfaces in the troposphere is known to be important, there are currently only a few techniques available for studying the nature of surface-adsorbed species as well as their chemistry and photochemistry under atmospheric conditions of 1 atm pressure and in the presence of water vapor. We report here a new laboratory approach using a combination of long path Fourier transform infrared spectroscopy (FTIR) and attenuated total reflectance (ATR) FTIR that allows the simultaneous observation and measurement of gases and surface species. Theory is used to identify the surface-adsorbed intermediates and products, and to estimate their relative concentrations. At intermediate relative humidities typical of the tropospheric boundary layer, the nitric acid formed during NO2 heterogeneous hydrolysis is shown to exist both as nitrate ions from the dissociation of nitric acid formed on the surface and as molecular nitric acid. In both cases, the ions and HNO3 are complexed to water molecules. Upon pumping, water is selectively removed, shifting the NO(3-)-HNO3(H2O)y equilibria toward more dehydrated forms of HNO3 and ultimately to nitric acid dimers. Irradiation of the nitric acid-water film using 300-400 nm radiation generates gaseous NO, while irradiation at 254 nm generates both NO and HONO, resulting in conversion of surface-adsorbed nitrogen oxides into photochemically active NO(x). These studies suggest that the assumption that deposition or formation of nitric acid provides a permanent removal mechanism from the atmosphere may not be correct. Furthermore, a potential role of surface-adsorbed nitric acid and other species formed during the heterogeneous hydrolysis of NO2 in the oxidation of organics on surfaces, and in the generation of gas-phase HONO on local to global scales, should be considered.

SELECTION OF CITATIONS
SEARCH DETAIL
...