Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 29(5): 1498-509, 2013 Feb 05.
Article in English | MEDLINE | ID: mdl-23305497

ABSTRACT

Antibody microarrays are powerful and high-throughput tools for screening and identifying tumor markers from small sample volumes of only a few microliters. Optimization of surface chemistry and spotting conditions are crucial parameters to enhance antibodies' immobilization efficiency and to maintain their biological activity. Here, we report the implementation of an antibody microarray for the detection of tumor markers involved in colorectal cancer. Three-dimensional microstructured glass slides were functionalized with three different aminated molecules ((3-aminopropyl)dimethylethoxysilane (APDMES), Jeffamine, and chitosan) varying in their chain length, their amine density, and their hydrophilic/hydrophobic balance. The physicochemical properties of the resulting surfaces were characterized. Antibody immobilization efficiency through physical interaction was studied as a function of surface properties as well as a function of the immobilization conditions. The results show that surface energy, steric hindrance, and pH of spotting buffer have great effects on protein immobilization. Under optimal conditions, biological activities of four immobilized antitumor marker antibodies were evaluated in multiplex immunoassay for the detection of the corresponding tumor markers. Results indicated that the chitosan functionalized surface displayed the highest binding capacity and allowed to retain maximal biological activity of the four tested antibody/antigen systems. Thus, we successfully demonstrated the application of amino-based surface modification for antibody microarrays to efficiently detect tumor markers.


Subject(s)
Amines/chemistry , Antibodies/chemistry , Biomarkers, Tumor/analysis , Chitosan/chemistry , Colorectal Neoplasms/diagnosis , Propylamines/chemistry , Silanes/chemistry , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Protein Array Analysis , Surface Properties
2.
Chem Commun (Camb) ; 48(6): 820-2, 2012 Jan 21.
Article in English | MEDLINE | ID: mdl-22134672

ABSTRACT

LaTiO(2)N photoanodes for solar water splitting were prepared by electrophoretic deposition and demonstrated the best photocurrents ever reported for this material. Further important enhancement of the performance was obtained by the use of a sputtered In(2)O(3) overlayer.

3.
Chem Commun (Camb) ; (16): 2022-3, 2003 Aug 21.
Article in English | MEDLINE | ID: mdl-12934892

ABSTRACT

Pt nanoparticle-supported conducting nanotubules of polypyrrole prepared by a template method exhibited excellent catalytic activity and stability for the electrooxidation of methanol in comparison to Pt supported on conventionally synthesised conducting polypyrrole.

4.
Electrophoresis ; 23(5): 782-90, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11891712

ABSTRACT

This paper presents a fabrication of polymer microchips with homogeneous material technique due to surface treatment by plasma before sealing. UV laser photoablation was used for fast prototyping of microstructures, and oxygen plasma was used as a surface treatment for both the microfabricated substrate and the polymer cover. It was found that with an oxidative plasma treatment, successful bonding could be achieved without adhesive material between polymer sheets substantially below the glass transition temperature of the polymer. Homogeneous polyethylene terephthalate (PET) microstructures were characterized by scanning electron microscopy (SEM) and analyzed by X-ray photoelectron spectroscopy (XPS) surface analyses after different surface treatments. The electroosmotic flow characteristics including the velocity and the stability over 20 days have been tested and compared to composite channels, in which the cover presents a polyethylene (PE) adhesive layer. Capillary zone electrophoresis in both homogeneous and composite microanalytical devices were then performed and compared in order to evaluate the separation efficiency. In preliminary experiments, a plate height of 0.6 microm has been obtained with homogenous microchannels. The surface analysis pointed out that the surface chemistry is of prime importance for the performance of microfluidic separation.


Subject(s)
Electrophoresis, Capillary/methods , Biotinylation , Fluorescent Dyes/isolation & purification , Microscopy, Electron, Scanning , Polyethylene Terephthalates
SELECTION OF CITATIONS
SEARCH DETAIL
...