Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 618(7964): 394-401, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37225996

ABSTRACT

The endoplasmic reticulum (ER) undergoes continuous remodelling via a selective autophagy pathway, known as ER-phagy1. ER-phagy receptors have a central role in this process2, but the regulatory mechanism remains largely unknown. Here we report that ubiquitination of the ER-phagy receptor FAM134B within its reticulon homology domain (RHD) promotes receptor clustering and binding to lipidated LC3B, thereby stimulating ER-phagy. Molecular dynamics (MD) simulations showed how ubiquitination perturbs the RHD structure in model bilayers and enhances membrane curvature induction. Ubiquitin molecules on RHDs mediate interactions between neighbouring RHDs to form dense receptor clusters that facilitate the large-scale remodelling of lipid bilayers. Membrane remodelling was reconstituted in vitro with liposomes and ubiquitinated FAM134B. Using super-resolution microscopy, we discovered FAM134B nanoclusters and microclusters in cells. Quantitative image analysis revealed a ubiquitin-mediated increase in FAM134B oligomerization and cluster size. We found that the E3 ligase AMFR, within multimeric ER-phagy receptor clusters, catalyses FAM134B ubiquitination and regulates the dynamic flux of ER-phagy. Our results show that ubiquitination enhances RHD functions via receptor clustering, facilitates ER-phagy and controls ER remodelling in response to cellular demands.


Subject(s)
Autophagy , Endoplasmic Reticulum Stress , Endoplasmic Reticulum , Ubiquitination , Autophagy/physiology , Endoplasmic Reticulum/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Ubiquitins/metabolism , Microtubule-Associated Proteins/metabolism , Receptors, Autocrine Motility Factor/metabolism
2.
Cell Rep ; 31(7): 107667, 2020 05 19.
Article in English | MEDLINE | ID: mdl-32433976

ABSTRACT

Human guanylate binding protein 1 (hGBP1) belongs to the dynamin superfamily of GTPases and conveys host defense against intracellular bacteria and parasites. During infection, hGBP1 is recruited to pathogen-containing vacuoles, such as Chlamydia trachomatis inclusions, restricts pathogenic growth, and induces the activation of the inflammasome pathway. hGBP1 has a unique catalytic activity to hydrolyze guanosine triphosphate (GTP) to guanosine monophosphate (GMP) in two consecutive cleavage steps. However, the functional significance of this activity in host defense remains elusive. Here, we generate a structure-guided mutant that specifically abrogates GMP production, while maintaining fast cooperative GTP hydrolysis. Complementation experiments in human monocytes/macrophages show that hGBP1-mediated GMP production is dispensable for restricting Chlamydia trachomatis growth but is necessary for inflammasome activation. Mechanistically, GMP is catabolized to uric acid, which in turn activates the NLRP3 inflammasome. Our study demonstrates that the unique enzymology of hGBP1 coordinates bacterial growth restriction and inflammasome signaling.


Subject(s)
Chlamydia Infections/immunology , Chlamydia trachomatis/growth & development , GTP-Binding Proteins/metabolism , Guanosine Triphosphate/metabolism , Inflammasomes/metabolism , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Cyclic GMP , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/genetics , GTP-Binding Proteins/immunology , Guanine Nucleotides/metabolism , Humans , Hydrolysis , Inflammasomes/immunology , Macrophages/immunology , Macrophages/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein , Signal Transduction , THP-1 Cells , Uric Acid/metabolism
3.
Cell ; 177(5): 1187-1200.e16, 2019 05 16.
Article in English | MEDLINE | ID: mdl-31006531

ABSTRACT

The conventional view posits that E3 ligases function primarily through conjugating ubiquitin (Ub) to their substrate molecules. We report here that RIPLET, an essential E3 ligase in antiviral immunity, promotes the antiviral signaling activity of the viral RNA receptor RIG-I through both Ub-dependent and -independent manners. RIPLET uses its dimeric structure and a bivalent binding mode to preferentially recognize and ubiquitinate RIG-I pre-oligomerized on dsRNA. In addition, RIPLET can cross-bridge RIG-I filaments on longer dsRNAs, inducing aggregate-like RIG-I assemblies. The consequent receptor clustering synergizes with the Ub-dependent mechanism to amplify RIG-I-mediated antiviral signaling in an RNA-length dependent manner. These observations show the unexpected role of an E3 ligase as a co-receptor that directly participates in receptor oligomerization and ligand discrimination. It also highlights a previously unrecognized mechanism by which the innate immune system measures foreign nucleic acid length, a common criterion for self versus non-self nucleic acid discrimination.


Subject(s)
Immunity, Innate , RNA, Double-Stranded/immunology , Signal Transduction/immunology , Ubiquitin-Protein Ligases/immunology , Ubiquitin/immunology , A549 Cells , Animals , DEAD Box Protein 58/immunology , HEK293 Cells , Humans , Mice , Receptors, Immunologic
4.
EBioMedicine ; 23: 100-110, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28803120

ABSTRACT

The intracellular human bacterial pathogen Chlamydia trachomatis pursues effective strategies to protect infected cells against death-inducing stimuli. Here, we show that Chlamydia trachomatis infection evokes 3-phosphoinositide-dependent protein kinase-1 (PDPK1) signaling to ensure the completion of its developmental cycle, further leading to the phosphorylation and stabilization of MYC. Using biochemical approaches and imaging we demonstrate that Chlamydia-induced PDPK1-MYC signaling induces host hexokinase II (HKII), which becomes enriched and translocated to the mitochondria. Strikingly, preventing the HKII interaction with mitochondria using exogenous peptides triggers apoptosis of infected cells as does inhibiting either PDPK1 or MYC, which also disrupts intracellular development of Chlamydia trachomatis. These findings identify a previously unknown pathway activated by Chlamydia infection, which exhibits pro-carcinogenic features. Targeting the PDPK1-MYC-HKII-axis may provide a strategy to overcome therapeutic resistance of infection.


Subject(s)
3-Phosphoinositide-Dependent Protein Kinases/metabolism , Apoptosis , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Chlamydia trachomatis/physiology , Hexokinase/metabolism , Mitochondria/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Enzyme Activation , HeLa Cells , Host-Pathogen Interactions , Humans , Immunohistochemistry , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation
5.
Nat Commun ; 8: 15258, 2017 05 31.
Article in English | MEDLINE | ID: mdl-28561061

ABSTRACT

The mitochondrial contact site and cristae organizing system (MICOS) is crucial for the formation of crista junctions and mitochondrial inner membrane architecture. MICOS contains two core components. Mic10 shows membrane-bending activity, whereas Mic60 (mitofilin) forms contact sites between inner and outer membranes. Here we report that Mic60 deforms liposomes into thin membrane tubules and thus displays membrane-shaping activity. We identify a membrane-binding site in the soluble intermembrane space-exposed part of Mic60. This membrane-binding site is formed by a predicted amphipathic helix between the conserved coiled-coil and mitofilin domains. The mitofilin domain negatively regulates the membrane-shaping activity of Mic60. Binding of Mic19 to the mitofilin domain modulates this activity. Membrane binding and shaping by the conserved Mic60-Mic19 complex is crucial for crista junction formation, mitochondrial membrane architecture and efficient respiratory activity. Mic60 thus plays a dual role by shaping inner membrane crista junctions and forming contact sites with the outer membrane.


Subject(s)
Mitochondrial Membranes/metabolism , Mitochondrial Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Amino Acid Sequence , Cell Membrane/metabolism , Liposomes , Mitochondrial Proteins/chemistry , Protein Binding , Saccharomyces cerevisiae/metabolism , Sequence Homology, Amino Acid
SELECTION OF CITATIONS
SEARCH DETAIL
...