Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Virol J ; 18(1): 5, 2021 01 06.
Article in English | MEDLINE | ID: mdl-33407622

ABSTRACT

BACKGROUND: Advances in sequencing and analysis tools have facilitated discovery of many new viruses from invertebrates, including ants. Solenopsis invicta is an invasive ant that has quickly spread worldwide causing significant ecological and economic impacts. Its virome has begun to be characterized pertaining to potential use of viruses as natural enemies. Although the S. invicta virome is the best characterized among ants, most studies have been performed in its native range, with less information from invaded areas. METHODS: Using a metatranscriptome approach, we further identified and molecularly characterized virus sequences associated with S. invicta, in two introduced areas, U.S and Taiwan. The data set used here was obtained from different stages (larvae, pupa, and adults) of S. invicta life cycle. Publicly available RNA sequences from GenBank's Sequence Read Archive were downloaded and de novo assembled using CLC Genomics Workbench 20.0.1. Contigs were compared against the non-redundant protein sequences and those showing similarity to viral sequences were further analyzed. RESULTS: We characterized five putative new viruses associated with S. invicta transcriptomes. Sequence comparisons revealed extensive divergence across ORFs and genomic regions with most of them sharing less than 40% amino acid identity with those closest homologous sequences previously characterized. The first negative-sense single-stranded RNA virus genomic sequences included in the orders Bunyavirales and Mononegavirales are reported. In addition, two positive single-strand virus genome sequences and one single strand DNA virus genome sequence were also identified. While the presence of a putative tenuivirus associated with S. invicta was previously suggested to be a contamination, here we characterized and present strong evidence that Solenopsis invicta virus 14 (SINV-14) is a tenui-like virus that has a long-term association with the ant. Furthermore, based on virus sequence abundance compared to housekeeping genes, phylogenetic relationships, and completeness of viral coding sequences, our results suggest that four of five virus sequences reported, those being SINV-14, SINV-15, SINV-16 and SINV-17, may be associated to viruses actively replicating in the ant S. invicta. CONCLUSIONS: The present study expands our knowledge about viral diversity associated with S. invicta in introduced areas with potential to be used as biological control agents, which will require further biological characterization.


Subject(s)
Ants/virology , Introduced Species , Virome/genetics , Animals , Ants/genetics , Ants/growth & development , Biodiversity , DNA Viruses/classification , DNA Viruses/genetics , Genome, Viral/genetics , Life Cycle Stages , Open Reading Frames/genetics , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , Taiwan , Transcriptome , United States
2.
Arch Virol ; 163(11): 3163-3166, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30032448

ABSTRACT

Gemycircularviruses (genus Gemycircularvirus, family Genomoviridae) are single-stranded DNA viruses that are spread around the world in association with several organisms and environments. In this work, we identified two gemycircularviruses associated with two non-cultivated plants in Brazil, Momordica charantia and Euphorbia heterophylla. Both viruses display the general genome structure of gemycircularviruses. The virus isolated from M. charantia showed the highest nucleotide sequence identity with Pteropus associated gemycircularvirus 5, and an atypical structure consisting of a hairpin embedded in the major stem-loop was observed in the intergenic region. The virus from E. heterophylla showed the highest nucleotide sequence identity with Odonata associated gemycircularvirus 1. Phylogenetic analysis groups the two new viruses together with other genomoviruses of the genus Gemycircularvirus.


Subject(s)
DNA Viruses/genetics , Euphorbia/virology , Genome, Viral , Momordica charantia/virology , Plant Diseases/virology , Plant Viruses/isolation & purification , Amino Acid Sequence , Base Sequence , Brazil , DNA Viruses/classification , DNA Viruses/isolation & purification , Molecular Sequence Data , Phylogeny , Plant Viruses/classification , Plant Viruses/genetics , Sequence Analysis, DNA
3.
J Gen Virol ; 98(6): 1537-1551, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28612702

ABSTRACT

The emergence of begomoviruses (whitefly-transmitted viruses classified in the genus Begomovirus, family Geminiviridae) in Brazil probably occurred by horizontal transfer from non-cultivated plants after the introduction of Bemisia tabaci MEAM1. The centre of diversity of Euphorbia heterophylla (Euphorbiaceae) is located in Brazil and Paraguay, where it is an invasive species in soybean and other crops. Reports of possible begomovirus infection of E. heterophylla in Brazil date back to the 1950s. In 2011, Euphorbia yellow mosaic virus (EuYMV) was described in symptomatic plants collected in the Brazilian state of Goiás. Here we assess the genetic variability and population structure of begomoviruses infecting E. heterophylla in samples collected throughout nine Brazilian states from 2009 to 2014. A total of 158 and 57 haplotypes were compared in DNA-A and DNA-B datasets, respectively. Analysis comparing population structure in a large sampled area enabled us to differentiate two subpopulations. Further, the application of discriminant analysis of principal components allowed the differentiation of six subpopulations according to sampling locations and in agreement with phylogenetic analysis. In general, negative selection was predominant in all six subpopulations. Interestingly, we were able to reconstruct the phylogeny based on the information from the 23 sites that contributed most to the geographical structure proposed, demonstrating that these polymorphisms hold supporting information to discriminate between subpopulations. These sites were mapped in the genome and compared at the level of amino acid changes, providing insights into how genetic drift and selection contribute to maintain the patterns of begomovirus population variability from a geographical structuring point of view.


Subject(s)
Begomovirus/classification , Begomovirus/genetics , Euphorbia/virology , Genetic Variation , Phylogeography , Plant Diseases/virology , Begomovirus/isolation & purification , Brazil , Evolution, Molecular , Haplotypes
4.
J Gen Virol ; 95(Pt 11): 2540-2552, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25028472

ABSTRACT

Begomoviruses are whitefly-transmitted, ssDNA plant viruses and are among the most damaging pathogens causing epidemics in economically important crops worldwide. Wild/non-cultivated plants play a crucial epidemiological role, acting as begomovirus reservoirs and as 'mixing vessels' where recombination can occur. Previous work suggests a higher degree of genetic variability in begomovirus populations from non-cultivated hosts compared with cultivated hosts. To assess this supposed host effect on the genetic variability of begomovirus populations, cultivated (common bean, Phaseolus vulgaris, and lima bean, Phaseolus lunatus) and non-cultivated (Macroptilium lathyroides) legume hosts were sampled from two regions of Brazil. A total of 212 full-length DNA-A genome segments were sequenced from samples collected between 2005 and 2012, and populations of the begomoviruses Bean golden mosaic virus (BGMV) and Macroptilium yellow spot virus (MaYSV) were obtained. We found, for each begomovirus species, similar genetic variation between populations infecting cultivated and non-cultivated hosts, indicating that the presumed genetic variability of the host did not a priori affect viral variability. We observed a higher degree of genetic variation in isolates from MaYSV populations than BGMV populations, which was explained by numerous recombination events in MaYSV. MaYSV and BGMV showed distinct distributions of genetic variation, with the BGMV population (but not MaYSV) being structured by both host and geography.


Subject(s)
Begomovirus/genetics , Begomovirus/pathogenicity , Fabaceae/virology , Plant Diseases/virology , Animals , Begomovirus/classification , Brazil , Genetic Variation , Genome, Viral , Hemiptera/virology , Host Specificity/genetics , Host-Pathogen Interactions/genetics , Molecular Sequence Data , Phaseolus/virology , Phylogeny , Recombination, Genetic , Selection, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...