Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Microbiol Methods ; 172: 105903, 2020 05.
Article in English | MEDLINE | ID: mdl-32229265

ABSTRACT

The Yersinia pestis capsular antigen F1 is widely used in plague laboratory diagnosis. Here, we describe the production of an F1 recombinant protein within reduced time and biosafety requirements. Its evaluation in hemagglutination tests indicated that the recombinant F1 can replace the conventional F1 protein for plague diagnosis.


Subject(s)
Antigens, Bacterial/genetics , Antigens, Bacterial/immunology , Costs and Cost Analysis , Plague/diagnosis , Plague/immunology , Animals , Antibodies, Bacterial/immunology , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Disease Models, Animal , Hemagglutination Tests/methods , Male , Rabbits , Recombinant Proteins/immunology , Time Factors
2.
RNA Biol ; 15(6): 739-755, 2018.
Article in English | MEDLINE | ID: mdl-29569995

ABSTRACT

The Poly-A Binding Protein (PABP) is a conserved eukaryotic polypeptide involved in many aspects of mRNA metabolism. During translation initiation, PABP interacts with the translation initiation complex eIF4F and enhances the translation of polyadenylated mRNAs. Schematically, most PABPs can be divided into an N-terminal RNA-binding region, a non-conserved linker segment and the C-terminal MLLE domain. In pathogenic Leishmania protozoans, three PABP homologues have been identified, with the first one (PABP1) targeted by phosphorylation and shown to co-immunoprecipitate with an eIF4F-like complex (EIF4E4/EIF4G3) implicated in translation initiation. Here, PABP1 phosphorylation was shown to be linked to logarithmic cell growth, reminiscent of EIF4E4 phosphorylation, and coincides with polysomal association. Phosphorylation targets multiple serine-proline (SP) or threonine-proline (TP) residues within the PABP1 linker region. This is an essential protein, but phosphorylation is not needed for its association with polysomes or cell viability. Mutations which do impair PABP1 polysomal association and are required for viability do not prevent phosphorylation, although further mutations lead to a presumed inactive protein largely lacking phosphorylated isoforms. Co-immunoprecipitation experiments were carried out to investigate PABP1 function further, identifying several novel protein partners and the EIF4E4/EIF4G3 complex, but no other eIF4F-like complex or subunit. A novel, direct interaction between PABP1 and EIF4E4 was also investigated and found to be mediated by the PABP1 MLLE binding to PABP Interacting Motifs (PAM2) within the EIF4E4 N-terminus. The results shown here are consistent with phosphorylation of PABP1 being part of a novel pathway controlling its function and possibly translation in Leishmania.


Subject(s)
Leishmania infantum/metabolism , Peptide Chain Initiation, Translational/physiology , Poly(A)-Binding Proteins/metabolism , Protozoan Proteins/metabolism , Amino Acid Motifs , Leishmania infantum/genetics , Phosphorylation/physiology , Poly(A)-Binding Proteins/genetics , Protozoan Proteins/genetics
3.
Curr Genet ; 64(4): 821-839, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29288414

ABSTRACT

Trypanosomatids are parasitic protozoans characterized by several unique structural and metabolic processes that include exquisite mechanisms associated with gene expression and regulation. During the initiation of protein synthesis, for instance, mRNA selection for translation seems to be mediated by different eIF4F-like complexes, which may play a significant role in parasite adaptation to different hosts. In eukaryotes, the heterotrimeric eIF4F complex (formed by eIF4E, eIF4G, and eIF4A) mediates mRNA recognition and ribosome binding and participates in various translation regulatory events. Six eIF4Es and five eIF4Gs have been described in trypanosomatids with several of these forming different eIF4F-like complexes. This has raised questions about their role in differential mRNA translation. Here we have studied further TbEIF4E2, the least known eIF4E homologue from Trypanosoma brucei, and found that it is not associated with an eIF4G homolog. It is, however, associated with mature mRNAs and binds to a histone mRNA stem-loop-binding protein (SLBP), one of two Trypanosoma SLBP homologs (TbSLBP1 and TbSLBP2). TbSLBP1 is more similar to the mammalian counterpart while TbSLBP2 is exclusive to trypanosomatids and related organisms. TbSLBP2 binds to TbEIF4E2 through a conserved central region missing in other SLBP homologs. Both SLBPs, as well as TbEIF4E2, were found to localize to the cytoplasm. TbEIF4E2 and TbSLBP2 are differentially expressed during cell culture, being more abundant in early-log phase, with TbSLBP2 also showing cell-cycle dependent expression. The new data reinforce unique aspects of the trypanosomatid eIF4Es, with the TbEIF4E2-TbSLBP complex possibly having a role in differential selection of mRNAs containing stem-loop structures.


Subject(s)
Eukaryotic Initiation Factor-4E/genetics , Nuclear Proteins/genetics , Trypanosoma brucei brucei/genetics , Trypanosomiasis/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , Amino Acid Sequence/genetics , Gene Expression/genetics , Histones/genetics , Humans , Protein Binding , Protein Biosynthesis/genetics , RNA Cap-Binding Proteins/genetics , RNA, Messenger/genetics , Sequence Alignment , Trypanosomiasis/parasitology
4.
RNA Biol ; 12(11): 1209-21, 2015.
Article in English | MEDLINE | ID: mdl-26338184

ABSTRACT

The eukaryotic initiation factor 4E (eIF4E) recognizes the mRNA cap structure and, together with eIF4G and eIF4A, form the eIF4F complex that regulates translation initiation in eukaryotes. In trypanosomatids, 2 eIF4E homologues (EIF4E3 and EIF4E4) have been shown to be part of eIF4F-like complexes with presumed roles in translation initiation. Both proteins possess unique N-terminal extensions, which can be targeted for phosphorylation. Here, we provide novel insights on the Leishmania infantum EIF4E4 function and regulation. We show that EIF4E4 is constitutively expressed throughout the parasite development but is preferentially phosphorylated in exponentially grown promastigote and amastigote life stages, hence correlating with high levels of translation. Phosphorylation targets multiple serine-proline or threonine-proline residues within the N-terminal extension of EIF4E4 but does not require binding to the EIF4E4's partner, EIF4G3, or to the cap structure. We also report that EIF4E4 interacts with PABP1 through 3 conserved boxes at the EIF4E4 N-terminus and that this interaction is a prerequisite for efficient EIF4E4 phosphorylation. EIF4E4 is essential for Leishmania growth and an EIF4E4 null mutant was only obtained in the presence of an ectopically provided wild type gene. Complementation for the loss of EIF4E4 with several EIF4E4 mutant proteins affecting either phosphorylation or binding to mRNA or to EIF4E4 protein partners revealed that, in contrast to other eukaryotes, only the EIF4E4-PABP1 interaction but neither the binding to EIF4G3 nor phosphorylation is essential for translation. These studies also demonstrated that the lack of both EIF4E4 phosphorylation and EIF4G3 binding leads to a non-functional protein. Altogether, these findings further highlight the unique features of the translation initiation process in trypanosomatid protozoa.


Subject(s)
Eukaryotic Initiation Factor-4E/metabolism , Leishmania/genetics , Leishmania/metabolism , Peptide Chain Initiation, Translational , Protein Interaction Domains and Motifs , Amino Acid Motifs , Amino Acid Sequence , Conserved Sequence , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4G/metabolism , Gene Expression , Gene Knockout Techniques , Leishmania/growth & development , Life Cycle Stages , Molecular Sequence Data , Phosphorylation , Poly(A)-Binding Proteins/chemistry , Poly(A)-Binding Proteins/metabolism , Protein Binding , Sequence Alignment
5.
RNA Biol ; 12(3): 305-19, 2015.
Article in English | MEDLINE | ID: mdl-25826663

ABSTRACT

In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation.


Subject(s)
Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4G/genetics , Leishmania major/genetics , Peptide Chain Initiation, Translational , Protozoan Proteins/genetics , Trypanosoma brucei brucei/genetics , Amino Acid Sequence , Binding Sites , Eukaryotic Initiation Factor-4A/chemistry , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4G/chemistry , Eukaryotic Initiation Factor-4G/metabolism , Gene Expression Regulation , Leishmania major/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Trypanosoma brucei brucei/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...