Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Br J Pharmacol ; 172(19): 4699-713, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26177571

ABSTRACT

BACKGROUND AND PURPOSE: We have reported that exposure to a diabetic intrauterine environment during pregnancy increases blood pressure in adult offspring, but the mechanisms involved are not completely understood. This study was designed to analyse a possible role of perivascular sympathetic and nitrergic innervation in the superior mesenteric artery (SMA) in this effect. EXPERIMENTAL APPROACH: Diabetes was induced in pregnant Wistar rats by a single injection of streptozotocin. Endothelium-denuded vascular rings from the offspring of control (O-CR) and diabetic rats (O-DR) were used. Vasomotor responses to electrical field stimulation (EFS), NA and the NO donor DEA-NO were studied. The expressions of neuronal NOS (nNOS) and phospho-nNOS (P-nNOS) and release of NA, ATP and NO were determined. Sympathetic and nitrergic nerve densities were analysed by immunofluorescence. KEY RESULTS: Blood pressure was higher in O-DR animals. EFS-induced vasoconstriction was greater in O-DR animals. This response was decreased by phentolamine more in O-DR animals than their controls. L-NAME increased EFS-induced vasoconstriction more strongly in O-DR than in O-CR segments. Vasomotor responses to NA or DEA-NO were not modified. NA, ATP and NO release was increased in segments from O-DR. nNOS expression was not modified, whereas P-nNOS expression was increased in O-DR. Sympathetic and nitrergic nerve densities were similar in both experimental groups. CONCLUSIONS AND IMPLICATIONS: The activity of sympathetic and nitrergic innervation is increased in SMA from O-DR animals. The net effect is an increase in EFS-induced contractions in these animals. These effects may contribute to the increased blood pressure observed in the offspring of diabetic rats.


Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Mesenteric Arteries/innervation , Acetylcholine/pharmacology , Adenosine Triphosphate/metabolism , Animals , Blood Glucose/analysis , Blood Pressure , Body Weight , Diabetes Mellitus, Experimental/metabolism , Electric Stimulation , Female , Male , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type I/metabolism , Pregnancy , Rats, Wistar , Sodium/metabolism , Superoxides/metabolism , Vasoconstriction , Vasodilation
2.
Br J Pharmacol ; 166(7): 2198-208, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22436072

ABSTRACT

BACKGROUND AND PURPOSE: The present study was designed to determine how diabetes in pregnancy affects vascular function in their offspring, the influence of age and whether COX activation is involved in this effect. EXPERIMENTAL APPROACH: Relaxation responses to ACh were analysed in mesenteric resistance arteries from the offspring of control rats (O-CR) and those of diabetic rats (O-DR) at 3, 6 and 12 months of age. TxB2, PGE2 and PGF(2α) release were determined by enzyme immunoassay. COX-1 and COX-2 expression were measured by Western blot analysis. KEY RESULTS: O-DR developed hypertension from 6 months of age compared with O-CR. In O-DR, relaxation responses to ACh were impaired in all ages studied and were restored by COX-2 inhibition. TP receptor blockade (SQ29548) restored ACh relaxation in arteries from 3-month-old O-DR while TP and EP receptor blockade (SQ29548 + AH6809) was required to restore it in 6-month-old O-DR. In 12-month-old O-DR, ACh relaxation was restored when TP, EP and FP receptors were blocked (SQ29548 + AH6809 + AL8810). ACh-stimulated TxB2 was higher in all O-DR. ACh-stimulated PGE2 release was increased in arteries from 6- and 12-month-old O-DR, whereas PGF(2α) was increased only in 12-month-old O-DR. COX-2, but not COX-1, expression was higher in O-DR than O-CR. CONCLUSIONS AND IMPLICATIONS: The results indicate an age-dependent up-regulation of COX-2 coupled to an enhanced formation of vasoconstrictor prostanoids in resistance arteries from O-DR. This effect plays a key role in the pathogenesis of endothelial dysfunction, which in turn could contribute to the progression of vascular dysfunction in these rats.


Subject(s)
Cyclooxygenase 2/physiology , Diabetes Mellitus, Experimental/physiopathology , Endothelium, Vascular/physiopathology , Mesenteric Arteries/physiology , Prostaglandins/physiology , Acetylcholine/pharmacology , Age Factors , Animals , Blood Glucose/analysis , Blood Pressure , Cyclooxygenase 1/physiology , Female , Male , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/physiology , Nitroprusside/pharmacology , Pregnancy , Rats , Rats, Wistar
3.
Braz J Med Biol Res ; 44(9): 920-32, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21956535

ABSTRACT

The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation of ß-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.


Subject(s)
Cardiovascular Diseases/physiopathology , Endocrine System Diseases/physiopathology , Endothelium, Vascular/physiopathology , Metabolic Diseases/physiopathology , Nitric Oxide Synthase Type III/metabolism , Animals , Cardiovascular Diseases/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/physiopathology , Endocrine System Diseases/metabolism , Endothelium, Vascular/metabolism , Endothelium-Dependent Relaxing Factors/physiology , Humans , Nitric Oxide/biosynthesis , Obesity/metabolism , Obesity/physiopathology , Rats
4.
Braz. j. med. biol. res ; 44(9): 920-932, Sept. 2011. ilus
Article in English | LILACS | ID: lil-599670

ABSTRACT

The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.


Subject(s)
Animals , Humans , Rats , Cardiovascular Diseases/physiopathology , Endocrine System Diseases/physiopathology , Endothelium, Vascular/physiopathology , Metabolic Diseases/physiopathology , Nitric Oxide Synthase Type III/metabolism , Cardiovascular Diseases/metabolism , Diabetes Mellitus/metabolism , Diabetes Mellitus/physiopathology , Endocrine System Diseases/metabolism , Endothelium, Vascular/metabolism , Endothelium-Dependent Relaxing Factors/physiology , Nitric Oxide/biosynthesis , Obesity/metabolism , Obesity/physiopathology
5.
Br J Pharmacol ; 158(7): 1787-95, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19891662

ABSTRACT

BACKGROUND AND PURPOSE: Prostacyclin (PGI(2)) is usually described as an endothelium-derived vasodilator, but it can also induce vasoconstriction. We studied the vasomotor responses to PGI(2) in resistance arteries and the role of thromboxane (TP) and prostaglandin E(2) (EP) receptors in this effect. EXPERIMENTAL APPROACH: Mesenteric resistance arteries were obtained from Sprague-Dawley rats. Vasomotion to PGI(2) was studied in segments of these arteries with and without endothelium and in presence of the nitric oxide (NO) synthase inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME), the potassium channel blockers apamin plus charybdotoxin, the non-selective EP receptor antagonist AH6809, the selective TP receptor antagonist SQ29548 or the EP(1) receptor antagonist SC19220. PGI(2)-induced NO release was analysed in the absence or presence of SQ29548, AH6809 or SC19220. KEY RESULTS: PGI(2) caused contractions in arterial segments that were increased by endothelium removal, L-NAME or L-NAME plus apamin plus charybdotoxin and abolished by SQ29548. In segments with endothelium, AH6809 or SC19220 almost abolished the contractions to PGI(2); this effect was prevented by L-NAME, L-NAME plus apamin plus charybdotoxin or by endothelium removal. PGI(2) induced NO release that was inhibited by the prostacyclin receptor (IP receptor) antagonist, RO1138452, and increased by SQ29548, SC19220 and AH6809. The increase in NO release induced by these separate drugs was inhibited by RO1138452. CONCLUSIONS AND IMPLICATIONS: PGI(2) activated the TP receptor in mesenteric resistance arteries and produced vasoconstriction, which the endothelium modulated through TP and EP(1) receptors. PGI(2) also released endothelium-derived hyperpolarizing factor and, through IP receptor activation, induced NO release, which in turn, was antagonized by TP and EP(1) receptor activation.


Subject(s)
Endothelium, Vascular/metabolism , Epoprostenol/metabolism , Receptors, Prostaglandin E/metabolism , Receptors, Thromboxane/metabolism , Animals , Biological Factors/metabolism , Epoprostenol/pharmacology , Male , Mesenteric Arteries/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Prostaglandin E/drug effects , Receptors, Prostaglandin E, EP1 Subtype , Receptors, Thromboxane/drug effects , Vasoconstriction/physiology
6.
Br J Pharmacol ; 154(6): 1225-35, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18500359

ABSTRACT

BACKGROUND AND PURPOSE: The present study was designed to assess whether cyclooxygenase-2 (COX-2) activation is involved in the effects of chronic aldosterone treatment on endothelial function of mesenteric resistance arteries (MRA) from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). EXPERIMENTAL APPROACH: Relaxation to acetylcholine was measured in MRA from both untreated and aldosterone-treated strains. Vasomotor responses to prostacyclin and U46619 were also analysed. Release of 6-oxo-prostaglandin (PG)F1alpha and thromboxane B2 (TxB2) was determined by enzyme immunoassay. COX-2 protein expression was measured by western blot. KEY RESULTS: Aldosterone reduced acetylcholine relaxation in MRA from both strains. In MRA from both aldosterone-treated strains the COX-1/2 or COX-2 inhibitor (indomethacin and NS-398, respectively), TxA2 synthesis inhibitor (furegrelate), prostacyclin synthesis inhibitor (tranylcypromine) or TxA2/ PGH2 receptor antagonist (SQ 29 548), but not COX-1 inhibitor SC-560, increased acetylcholine relaxation. In untreated rats this response was increased only in SHR. Prostacyclin elicited a biphasic vasomotor response: lower concentrations elicited relaxation, whereas higher concentrations elicited contraction that was reduced by SQ 29 548. Aldosterone increased the acetylcholine-stimulated production of 6-oxo-PGF(1alpha) and TxB2 in MRA from both strains. COX-2 expression was higher in both strains of rats treated with aldosterone. CONCLUSIONS AND IMPLICATIONS: Chronic treatment with aldosterone impaired endothelial function in MRA under normotensive and hypertensive conditions by increasing COX-2-derived prostacyclin and thromboxane A2. As endothelial dysfunction participates in the pathogenesis of many cardiovascular disorders we hypothesize that anti-inflammatory drugs, specifically COX-2 inhibitors, could ameliorate vascular damage in patients with elevated aldosterone production.


Subject(s)
Aldosterone/pharmacology , Endothelium, Vascular/drug effects , Epoprostenol/metabolism , Thromboxane A2/metabolism , Vascular Diseases/chemically induced , 15-Hydroxy-11 alpha,9 alpha-(epoxymethano)prosta-5,13-dienoic Acid/pharmacology , Animals , Blotting, Western , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , In Vitro Techniques , Male , Mesenteric Arteries/pathology , Muscle Relaxation/drug effects , Muscle, Smooth, Vascular/drug effects , Norepinephrine/pharmacology , Potassium Chloride/pharmacology , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Vascular Diseases/pathology , Vascular Resistance/drug effects , Vasoconstrictor Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...