Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters











Publication year range
1.
Environ Sci Pollut Res Int ; 30(42): 95537-95549, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37552440

ABSTRACT

As the main components of the building envelope, construction materials have a straight relation with air contaminants from anthropogenic origins. Titanium dioxide has been recently applied in construction industry products since its photocatalytic properties can be used for pollutant degradation purposes. This study evaluated the performance of cement-based mortars with the incorporation of TiO2 nanoparticles and mineral admixtures. Six mortar compositions were defined by considering two reference mixes (with and without TiO2 incorporation), two mineral admixtures (bentonite and metakaolin) as partial cement replacement and one waste from ornamental stone processing in two levels of partial substitution of natural sand. Consistency index, density, and entrained air content of mixtures were investigated at fresh state. Compressive strength, water absorption, sorptivity, and micrographs from scanning electron microscopy were used to characterize mortars at hardened state. It was observed that incorporation of TiO2 does not considerably change mortar's properties at fresh and hardened state, despite a denser microstructure and improved interfacial transition zone. In general, the relation between the water-to-cement ratio and porosity on the performances of TiO2-added mortars was shown, which is strongly related to their photocatalytic efficiency. Metakaolin mixtures were more efficient to NO conversion, and high selectivity was observed for the bentonite mortars.


Subject(s)
Bentonite , Titanium , Titanium/chemistry , Minerals , Water
2.
Materials (Basel) ; 16(13)2023 Jul 02.
Article in English | MEDLINE | ID: mdl-37445092

ABSTRACT

The search for alternative materials to replace ordinary Portland cement has been the object of work that enhances the investigation of the use of pozzolanic materials and the reduction of the carbon footprint with supplementary cementitious materials. However, not all materials are available to meet the large-scale demand for cement replacement. A relevant exception is the calcined clay, a material found worldwide that, when subjected to appropriate heat treatment, presents pozzolanic reactivity and can be used as a supplementary material to cement. This review presents, through a systematic search, methods for measuring the pozzolanic reactivity of calcined clays, namely, direct, indirect, qualitative, quantitative, chemical and physical methods such as electrical conductivity (Lùxan), the force activity index, the modified Chapelle, R3, Frattini test, thermal analysis, X-ray diffraction and X-ray fluorescence spectrometry. The most usual methods to assess the pozzolanic reactivity of calcined clays were exposed and analyzed. It should be pointed out that there is greater use of the Frattini and modified Chapelle methods as well as the analysis of the mechanical strength behavior of the material in cementitious matrices. X-ray diffraction and thermal analysis were exposed as the most used correlation methods but it was also concluded that different tests are needed to generate accurate results.

3.
Materials (Basel) ; 16(10)2023 May 18.
Article in English | MEDLINE | ID: mdl-37241432

ABSTRACT

This paper aimed to analyze the reduction in the ballast layer permeability simulated in a laboratory in saturated conditions by the presence of rock dust as a contaminant of three types of rocks explored in different deposits in the northern region of the state of Rio de Janeiro, Brazil, through laboratory testing relating the physical properties of rock particles before and after sodium sulfate attack. Sodium sulfate attack is justified by the proximity of some sections of the planned EF-118 Vitória-Rio railway line to the coast and of the sulfated water table to the ballast bed, which could degrade the material used and compromise the railway track. Granulometry and permeability tests were performed to compare ballast samples with fouling rates of 0, 10, 20, and 40% rock dust by volume. A constant head permeameter was used to analyze hydraulic conductivity and establish correlations between the petrography and mercury intrusion porosimetry of the rocks, namely two types of metagranite (Mg1 and Mg3) and a gneisse (Gn2). Rocks, such as Mg1 and Mg3, with a larger composition of minerals susceptible to weathering according to petrography analyses, tend to be more sensitive to weathering tests. This, in conjunction with the climate in the region studied, with average annual temperature and rainfall of 27 °C and 1200 mm, could compromise track safety and user comfort. Additionally, the Mg1 and Mg3 samples showed greater percentage variation in wear after the Micro-Deval test, which could damage the ballast due to the considerable changeability of the material. The mass loss caused by abrasion due to the passage of rail vehicles was assessed by the Micro-Deval test, with Mg3 (intact rock) declining from 8.50 ± 1.5 to 11.04 ± 0.5% after chemical attack. However, Gn2, which exhibited the greatest mass loss among the samples, showed no significant variation in average wear, and its mineralogical characteristics remained almost unchanged after 60 sodium sulfate cycles. These aspects, combined with its satisfactory hydraulic conductivity rate, indicate that Gn2 is suitable for use as railway ballast in the EF-118 railway line.

4.
Plants (Basel) ; 12(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36840302

ABSTRACT

Pulses provide distinct health benefits due to their low fat content and high protein and fiber contents. Their grain production reaches approximately 93,210 × 103 tons per year. Pulses benefit from the symbiosis with atmospheric N2-fixing bacteria, which increases productivity and reduces the need for N fertilizers, thus contributing to mitigation of environmental impact mitigation. Additionally, the root region harbors a rich microbial community with multiple traits related to plant growth promotion, such as nutrient increase and tolerance enhancement to abiotic or biotic stresses. We reviewed the eight most common pulses accounting for almost 90% of world production: common beans, chickpeas, peas, cowpeas, mung beans, lentils, broad beans, and pigeon peas. We focused on updated information considering both single-rhizobial inoculation and co-inoculation with plant growth-promoting rhizobacteria. We found approximately 80 microbial taxa with PGPR traits, mainly Bacillus sp., B. subtilis, Pseudomonas sp., P. fluorescens, and arbuscular mycorrhizal fungi, and that contributed to improve plant growth and yield under different conditions. In addition, new data on root, nodule, rhizosphere, and seed microbiomes point to strategies that can be used to design new generations of biofertilizers, highlighting the importance of microorganisms for productive pulse systems.

5.
Materials (Basel) ; 15(14)2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35888471

ABSTRACT

In the search for better constructive efficiency and a reduction of the waste of construction materials, several researches have been performed in the last years around the world. Red ceramic blocks are artifacts widely used in civil construction around the world, and they result in a great consumption of raw materials and energy. The great innovation of this research was the development of ceramic blocks through an innovative method of pressing and dosing materials, replacing the traditional stage of extrusion in the manufacture of ceramics. In such a sense, a new manufacturing technology for ceramic blocks was proposed through the pressing process, adapting the soil-cement brick press machine, thus attaining more even pieces with greater compliance to the dimensions and preset geometry. In this work, the physical and mechanical features of the pressed and burned blocks (PBB) are produced in a partnership with Arte Cerâmica Sardinha, a traditional ceramic industry in the region of Campos dos Goytacazes, RJ, Brazil. It was sought to set the quality parameters for the blocks, to set their mechanical compressive strength, deformation modules and the Poisson coefficient. The blocks were tested in use by means of three layers of prism and small wall samples, and it was checked the fragile-type failure of the PBB. Results indicate that the blocks can be employed in small-sized construction works, as the characteristic compressive strength to block measured was 3.62 N/mm2 for average water absorption of 20.84%.

6.
Environ Sci Pollut Res Int ; 29(50): 76202-76215, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35668265

ABSTRACT

The growing need for natural resources for the production of inputs for construction, such as ceramic bricks, as well as the high rates of solid waste generation in the sector, makes construction an industrial segment with unfavorable environmental effects. The Life Cycle Assessment (LCA) emerges as a tool capable of assisting in the quantification and analysis of the impacts associated with construction materials, whether traditional or alternative. Thus, the goal of this paper is to assess the environmental impacts associated with the development of alternative building materials. To compare the conventional and the alternative bricks, both were evaluated according to the LCIA methods Ecoindicator 99, IMPACT 2002+, and ReCiPe 2016, in the midpoint and endpoint levels. The sensitivity analysis was carried out considering as an alternative input for the firing process, a mixture composed of wood and biomass originating from the Pennisetum purpureum. According to Ecoindicator 99 method, the categories respiratory organics, fossil fuels, and radiation stand out, which showed greater sensitivity in altering the input used in the firing process, reducing their impacts by 38.38%, 34.68%, and 31.81%, respectively, when comparing product III (ceramic brick incorporated with OSPW and submitted to the firing process with the mix of wood and Pennisetum purpureum) and product I (ceramic brick incorporated with OSPW and submitted to the traditional firing process). In addition, in the respiratory organics category, the IMPACT 2002+ method showed a reduction of approximately 43% of the impacts associated with product III, when compared to the product with the greatest impact in this category. In a global analysis of the results presented by the ReCiPe 2016 method, the product III had the lowest associated environmental impact when compared to the other evaluated systems.


Subject(s)
Construction Materials , Solid Waste , Animals , Ceramics , Construction Materials/analysis , Fossil Fuels/analysis , Life Cycle Stages , Solid Waste/analysis
7.
Environ Sci Pollut Res Int ; 29(44): 66085-66099, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35488991

ABSTRACT

In recent years, the demand for clean water has been growing all over the world despite the different threats posed, including increasing pollution, increasing deforestation and climate change. Industrial activity is the second largest consumer of water, so highly industrialized regions are more susceptible to water stress. In this sense, reuse strategies have been progressively discussed and used around the world; however, in Brazil there is still place for many advances, whether due to lack of incentives, cultural issues in society, or poor regulation of the subject. The objective of this work was to carry out a diagnosis of raw water uptake by industries in one Hydrographic Region of the state of Rio de Janeiro and to propose a discussion on the adoption of water reuse practices for non-potable purposes from the use of treated effluents. A survey of the theoretical framework on the subject was carried out, as well as an analysis of sustainability indicators and reports of the companies, including the current licensing processes of large undertakings consuming water resources. With this study, it was possible to obtain the average cost of implementing a water reuse unit for an industry in the state of Rio de Janeiro-Brazil, which, despite still being expensive, has a strong tendency to use due to world water shortages. Finally, it was concluded that the state of Rio de Janeiro has a threat of water scarcity that could be aggravated in the coming years, if measures and investments in supply alternatives are not adopted (water reuse), and improvement in all stages of water management water resources.


Subject(s)
Rivers , Water Resources , Brazil , Industry , Water Supply
8.
Front Plant Sci ; 11: 602645, 2020.
Article in English | MEDLINE | ID: mdl-33510747

ABSTRACT

The mung bean has a great potential under tropical conditions given its high content of grain protein. Additionally, its ability to benefit from biological nitrogen fixation (BNF) through association with native rhizobia inhabiting nodule microbiome provides most of the nitrogen independence on fertilizers. Soil microbial communities which are influenced by biogeographical factors and soil properties, represent a source of rhizobacteria capable of stimulating plant growth. The objective of this study is to support selection of beneficial bacteria that form positive interactions with mung bean plants cultivated in tropical soils, as part of a seed inoculation program for increasing grain yield based on the BNF and other mechanisms. Two mung bean genotypes (Camaleão and Esmeralda) were cultivated in 10 soil samples. Nodule microbiome was characterized by next-generation sequencing using Illumina MiSeq 16S rRNA. More than 99% of nodule sequences showed similarity with Bradyrhizobium genus, the only rhizobial present in nodules in our study. Higher bacterial diversity of soil samples collected in agribusiness areas (MW_MT-I, II or III) was associated with Esmeralda genotype, while an organic agroecosystem soil sample (SE_RJ-V) showed the highest bacterial diversity independent of genotype. Furthermore, OTUs close to Bradyrhizobium elkanii have dominated in all soil samples, except in the sample from the organic agroecosystem, where just B. japonicum was present. Bacterial community of mung bean nodules is mainly influenced by soil pH, K, Ca, and P. Besides a difference on nodule colonization by OTU sequences close to the Pseudomonas genus regarding the two genotypes was detected too. Although representing a small rate, around 0.1% of the total, Pseudomonas OTUs were only retrieved from nodules of Esmeralda genotype, suggesting a different trait regarding specificity between macro- and micro-symbionts. The microbiome analysis will guide the next steps in the development of an inoculant for mung bean aiming to promote plant growth and grain yield, composed either by an efficient Bradyrhizobium strain on its own or co-inoculated with a Pseudomonas strain. Considering the results achieved, the assessment of microbial ecology parameters is a potent coadjuvant capable to accelerate the inoculant development process and to improve the benefits to the crop by soil microorganisms.

9.
Braz J Microbiol ; 50(3): 777-789, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31177380

ABSTRACT

Nine bacterial strains were previously isolated in association with pinewood nematode (PWN) from wilted pine trees. They proved to be nematicidal in vitro, and one of the highest activities, with potential to control PWN, was showed by Serratia sp. M24T3. Its ecology in association with plants remains unclear. This study aimed to evaluate the ability of strain M24T3 to colonize the internal tissues of the model plant Arabidopsis thaliana using confocal microscopy. Plant growth-promoting bacteria (PGPB) functional traits were tested and retrieved in the genome of strain M24T3. In greenhouse conditions, the bacterial effects of all nematicidal strains were also evaluated, co-inoculated or not with Bradyrhizobium sp. 3267, on Vigna unguiculata fitness. Inoculation of strain M24T3 increased the number of A. thaliana lateral roots and the confocal analysis confirmed effective bacterial colonization in the plant. Strain M24T3 showed cellulolytic activity, siderophores production, phosphate and zinc solubilization ability, and indole acetic acid production independent of supplementation with L-tryptophan. In the genome of strain M24T3, genes involved in the interaction with the plants such as 1-aminocyclopropane-1-carboxylate (ACC) deaminase, chitinolytic activity, and quorum sensing were also detected. The genomic organization showed ACC deaminase and its leucine-responsive transcriptional regulator, and the activity of ACC deaminase was 594.6 nmol α-ketobutyrate µg protein-1 µl-1. Strain M24T3 in co-inoculation with Bradyrhizobium sp. 3267 promoted the growth of V. unguiculata. In conclusion, this study demonstrated the ability of strain M24T3 to colonize other plants besides pine trees as an endophyte and displays PGPB traits that probably increased plant tolerance to stresses.


Subject(s)
Arabidopsis/microbiology , Nematoda/microbiology , Serratia/physiology , Animals , Antibiosis , Arabidopsis/growth & development , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon-Carbon Lyases/genetics , Carbon-Carbon Lyases/metabolism , Pinus/parasitology , Plant Diseases/parasitology , Plant Roots/growth & development , Plant Roots/microbiology , Quorum Sensing , Serratia/enzymology , Serratia/genetics , Serratia/isolation & purification , Vigna/growth & development , Vigna/microbiology
10.
Materials (Basel) ; 12(9)2019 May 05.
Article in English | MEDLINE | ID: mdl-31060268

ABSTRACT

Civil construction is one of the most resource-consuming sectors in the world. For this reason, the last years have witnessed the study of reusing industrial residues in building materials. The ornamental stone processing industry has a considerable environmental liability related to residue generation during the cutting stages of granite blocks. The objective of this work is to analyze the viability of incorporating granite residues, up to 100%, to substitute sand in coating mortars for building construction. Mortars without residue, as control, and incorporated with 20, 40, 60, 80, and 100% of granite residue were subjected to consistency tests, incorporated air and water retention together with the rheological characterization using the squeeze-flow and the dropping-ball methods. The results show that mortars with 40% granite residues presented greater plastic deformation, helping their applicability by also presenting improved technological properties in the fresh state.

11.
Braz. j. microbiol ; 49(4): 703-713, Oct.-Dec. 2018. tab, graf
Article in English | LILACS | ID: biblio-974305

ABSTRACT

ABSTRACT The leguminous inoculation with nodule-inducing bacteria that perform biological nitrogen fixation is a good example of an "eco-friendly agricultural practice". Bradyrhizobium strains BR 3267 and BR 3262 are recommended for cowpea (Vigna unguiculata) inoculation in Brazil and showed remarkable responses; nevertheless neither strain was characterized at species level, which is our goal in the present work using a polyphasic approach. The strains presented the typical phenotype of Bradyrhizobium with a slow growth and a white colony on yeast extract-mannitol medium. Strain BR 3267 was more versatile in its use of carbon sources compared to BR 3262. The fatty acid composition of BR 3267 was similar to the type strain of Bradyrhizobium yuanmingense; while BR 3262 was similar to Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi. Phylogenetic analyses based on 16S rRNA and three housekeeping genes placed both strains within the genus Bradyrhizobium: strain BR 3267 was closest to B. yuanmingense and BR 3262 to B. pachyrhizi. Genome average nucleotide identity and DNA-DNA reassociation confirmed the genomic identification of B. yuanmingense BR 3267 and B. pachyrhizi BR 3262. The nodC and nifH gene analyses showed that strains BR 3267 and BR 3262 hold divergent symbiotic genes. In summary, the results indicate that cowpea can establish effective symbiosis with divergent bradyrhizobia isolated from Brazilian soils.


Subject(s)
Bradyrhizobium/isolation & purification , Bradyrhizobium/genetics , Agricultural Inoculants/isolation & purification , Agricultural Inoculants/genetics , Vigna/microbiology , Phylogeny , Symbiosis , Brazil , DNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Genome, Bacterial , Evolution, Molecular , Bradyrhizobium/classification , Bradyrhizobium/physiology , Genomics , Root Nodules, Plant/microbiology , Agricultural Inoculants/classification , Agricultural Inoculants/physiology , Vigna/physiology
12.
Front Plant Sci ; 9: 613, 2018.
Article in English | MEDLINE | ID: mdl-29780402

ABSTRACT

An understanding of the interaction between rice and dark septate endophytic (DSE) fungi, under green fertilization, may lead to sustainable agricultural practices. Nevertheless, this interaction is still poorly understood. Therefore, in this study, we aimed to evaluate the accumulation of macro- and micronutrients, dry matter, and protein and N recovery efficiency from Canavalia ensiformis (L.)-15N in rice inoculated with DSE fungi. An experiment under greenhouse conditions was conducted in a randomized complete block design comprising split-plots, with five replicates of rice plants potted in non-sterilized soil. Rice (Piauí variety) seedlings were inoculated with DSE fungi, A101 and A103, or left uninoculated (control) and transplanted into pots containing 12 kg of soil, which had previously been supplemented with dry, finely ground shoot biomass of C. ensiformis enriched with 2.15 atom % 15N. Two collections were performed in the experiment: one at 54 days after transplanting (DAT) and one at 130 DAT (at maturation). Growth indicators (at 54 DAT), grain yield, nutrient content, recovery efficiency, and the amount of N derived from C. ensiformis were quantified. At 54 DAT, the N content, chlorophyll content, and plant height of inoculated plants had increased significantly compared with the control, and these plants were more proficient in the use of N derived from C. ensiformis. At maturation, plants inoculated with A103 were distinguished by the recovery efficiency and amount of N derived from C. ensiformis and N content in the grain and shoot being equal to that in A101 inoculation and higher than that in the control, resulting in a higher accumulation of crude protein and dry matter in the full grain and panicle of DSE-rice interaction. In addition, Fe and Ni contents in the grains of rice inoculated with these fungi doubled with respect to the control, and in A103 inoculation, we observed Mn accumulation that was three times higher than in the other treatments. Our results suggest that the inoculation of rice with DSE fungi represents a strategy to improve green manure-N recovery, grain yield per plant, and grain quality in terms of micronutrients contents in cropping systems with a low N input.

13.
Braz. j. microbiol ; 49(1): 67-78, Jan.-Mar. 2018. tab, graf
Article in English | LILACS | ID: biblio-889191

ABSTRACT

ABSTRACT The use of dark septate fungi (DSE) to promote plant growth can be beneficial to agriculture, and these organisms are important allies in the search for sustainable agriculture practices. This study investigates the contribution of dark septate fungi to the absorption of nutrients by rice plants and their ensuing growth. Four dark septate fungi isolates that were identified by Internal transcribed spacer phylogeny were inoculated in rice seeds (Cv. Piauí). The resulting root colonization was estimated and the kinetic parameters Vmax and Km were calculated from the nitrate contents of the nutrient solution. The macronutrient levels in the shoots, and the NO3--N, NH4+-N, free amino-N and soluble sugars in the roots, sheathes and leaves were measured. The rice roots were significantly colonized by all of the fungi, but in particular, isolate A103 increased the fresh and dry biomass of the shoots and the number of tillers per plant, amino-N, and soluble sugars as well as the N, P, K, Mg and S contents in comparison with the control treatment. When inoculated with isolates A103 and A101, the plants presented lower Km values, indicating affinity increases for NO3--N absorption. Therefore, the A103 Pleosporales fungus presented the highest potential for the promotion of rice plant growth, increasing the tillering and nutrients uptake, especially N (due to an enhanced affinity for N uptake) and P.


Subject(s)
Fungi/physiology , Oryza/growth & development , Oryza/microbiology , Ascomycota/classification , Ascomycota/genetics , Ascomycota/isolation & purification , Ascomycota/physiology , Biomass , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Nitrogen/metabolism , Oryza/metabolism , Phosphates/metabolism , Phylogeny , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Potassium/metabolism
14.
Braz J Microbiol ; 49(4): 703-713, 2018.
Article in English | MEDLINE | ID: mdl-28410799

ABSTRACT

The leguminous inoculation with nodule-inducing bacteria that perform biological nitrogen fixation is a good example of an "eco-friendly agricultural practice". Bradyrhizobium strains BR 3267 and BR 3262 are recommended for cowpea (Vigna unguiculata) inoculation in Brazil and showed remarkable responses; nevertheless neither strain was characterized at species level, which is our goal in the present work using a polyphasic approach. The strains presented the typical phenotype of Bradyrhizobium with a slow growth and a white colony on yeast extract-mannitol medium. Strain BR 3267 was more versatile in its use of carbon sources compared to BR 3262. The fatty acid composition of BR 3267 was similar to the type strain of Bradyrhizobium yuanmingense; while BR 3262 was similar to Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi. Phylogenetic analyses based on 16S rRNA and three housekeeping genes placed both strains within the genus Bradyrhizobium: strain BR 3267 was closest to B. yuanmingense and BR 3262 to B. pachyrhizi. Genome average nucleotide identity and DNA-DNA reassociation confirmed the genomic identification of B. yuanmingense BR 3267 and B. pachyrhizi BR 3262. The nodC and nifH gene analyses showed that strains BR 3267 and BR 3262 hold divergent symbiotic genes. In summary, the results indicate that cowpea can establish effective symbiosis with divergent bradyrhizobia isolated from Brazilian soils.


Subject(s)
Agricultural Inoculants/genetics , Agricultural Inoculants/isolation & purification , Bradyrhizobium/genetics , Bradyrhizobium/isolation & purification , Vigna/microbiology , Agricultural Inoculants/classification , Agricultural Inoculants/physiology , Bradyrhizobium/classification , Bradyrhizobium/physiology , Brazil , DNA, Bacterial/genetics , Evolution, Molecular , Genome, Bacterial , Genomics , Phylogeny , RNA, Ribosomal, 16S/genetics , Root Nodules, Plant/microbiology , Symbiosis , Vigna/physiology
15.
Braz J Microbiol ; 49(1): 67-78, 2018.
Article in English | MEDLINE | ID: mdl-28888828

ABSTRACT

The use of dark septate fungi (DSE) to promote plant growth can be beneficial to agriculture, and these organisms are important allies in the search for sustainable agriculture practices. This study investigates the contribution of dark septate fungi to the absorption of nutrients by rice plants and their ensuing growth. Four dark septate fungi isolates that were identified by Internal transcribed spacer phylogeny were inoculated in rice seeds (Cv. Piauí). The resulting root colonization was estimated and the kinetic parameters Vmax and Km were calculated from the nitrate contents of the nutrient solution. The macronutrient levels in the shoots, and the NO3--N, NH4+-N, free amino-N and soluble sugars in the roots, sheathes and leaves were measured. The rice roots were significantly colonized by all of the fungi, but in particular, isolate A103 increased the fresh and dry biomass of the shoots and the number of tillers per plant, amino-N, and soluble sugars as well as the N, P, K, Mg and S contents in comparison with the control treatment. When inoculated with isolates A103 and A101, the plants presented lower Km values, indicating affinity increases for NO3--N absorption. Therefore, the A103 Pleosporales fungus presented the highest potential for the promotion of rice plant growth, increasing the tillering and nutrients uptake, especially N (due to an enhanced affinity for N uptake) and P.


Subject(s)
Fungi/physiology , Oryza/growth & development , Oryza/microbiology , Ascomycota/classification , Ascomycota/genetics , Ascomycota/isolation & purification , Ascomycota/physiology , Biomass , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Nitrogen/metabolism , Oryza/metabolism , Phosphates/metabolism , Phylogeny , Plant Roots/growth & development , Plant Roots/metabolism , Plant Roots/microbiology , Potassium/metabolism
16.
Braz. j. microbiol ; 48(4): 610-611, Oct.-Dec. 2017.
Article in English | LILACS | ID: biblio-889168

ABSTRACT

ABSTRACT The strain BR 3351T (Bradyrhizobium manausense) was obtained from nodules of cowpea (Vigna unguiculata L. Walp) growing in soil collected from Amazon rainforest. Furthermore, it was observed that the strain has high capacity to fix nitrogen symbiotically in symbioses with cowpea. We report here the draft genome sequence of strain BR 3351T. The information presented will be important for comparative analysis of nodulation and nitrogen fixation for diazotrophic bacteria. A draft genome with 9,145,311 bp and 62.9% of GC content was assembled in 127 scaffolds using 100 bp pair-end Illumina MiSeq system. The RAST annotation identified 8603 coding sequences, 51 RNAs genes, classified in 504 subsystems.


Subject(s)
Bradyrhizobium/isolation & purification , Genome, Bacterial , Symbiosis , Vigna/microbiology , Base Composition , Bradyrhizobium/classification , Bradyrhizobium/genetics , Bradyrhizobium/physiology , Brazil , Rainforest , Root Nodules, Plant/microbiology
17.
Braz J Microbiol ; 48(4): 610-611, 2017.
Article in English | MEDLINE | ID: mdl-28237675

ABSTRACT

The strain BR 3351T (Bradyrhizobium manausense) was obtained from nodules of cowpea (Vigna unguiculata L. Walp) growing in soil collected from Amazon rainforest. Furthermore, it was observed that the strain has high capacity to fix nitrogen symbiotically in symbioses with cowpea. We report here the draft genome sequence of strain BR 3351T. The information presented will be important for comparative analysis of nodulation and nitrogen fixation for diazotrophic bacteria. A draft genome with 9,145,311bp and 62.9% of GC content was assembled in 127 scaffolds using 100bp pair-end Illumina MiSeq system. The RAST annotation identified 8603 coding sequences, 51 RNAs genes, classified in 504 subsystems.


Subject(s)
Bradyrhizobium/isolation & purification , Genome, Bacterial , Symbiosis , Vigna/microbiology , Base Composition , Bradyrhizobium/classification , Bradyrhizobium/genetics , Bradyrhizobium/physiology , Brazil , Rainforest , Root Nodules, Plant/microbiology
18.
Front Microbiol ; 8: 2437, 2017.
Article in English | MEDLINE | ID: mdl-29312163

ABSTRACT

Dark septate endophytic (DSE) fungi are facultative biotrophs that associate with hundreds of plant species, contributing to their growth. These fungi may therefore aid in the search for sustainable agricultural practices. However, several ecological functions of DSE fungi need further clarification. The present study investigated the effects of DSE fungi inoculation on nutrient recovery efficiency, nutrient accumulation, and growth of tomato plants fertilized with organic and inorganic N sources. Two experiments were carried out under greenhouse conditions in a randomized blocks design, with five replicates of tomato seedlings grown in pots filled with non-sterile sandy soil. Tomato seedlings (cv. Santa Clara I-5300) inoculated with DSE fungi (isolates A101, A104, and A105) and without DSE fungi (control) were transplanted to pots filled with 12 kg of soil which had previously received finely ground plant material [Canavalia ensiformis (L.)] that was shoot enriched with 0.7 atom % 15N (organic N source experiment) or ammonium sulfate-15N enriched with 1 atom % 15N (mineral N source experiment). Growth indicators, nutrient content, amount of nitrogen (N) in the plant derived from ammonium sulfate-15N or C. ensiformis-15N, and recovery efficiency of 15N, P, and K by plants were quantified 50 days after transplanting. The treatment inoculated with DSE fungi and supplied with an organic N source showed significantly higher recovery efficiency of 15N, P, and K. In addition, the 15N, N, P, K, Ca, Mg, Fe, Mn, and Zn content, plant height, leaf number, leaf area (only for the A104 inoculation), and shoot dry matter increased. In contrast, the only positive effects observed in the presence of an inorganic N source were fertilizer-K recovery efficiency, content of K, and leaf area when inoculated with the fungus A104. Inoculation with A101, A104, and A105 promoted the growth of tomato using organic N source (finely ground C. ensiformis-15N plant material).

19.
Braz. j. microbiol ; 47(4): 783-784, Oct.-Dec. 2016.
Article in English | LILACS, VETINDEX | ID: biblio-1469630

ABSTRACT

The strain BR 3262 was isolated from nodule of cowpea (Vigna unguiculata L. Walp) growing in soil of the Atlantic Forest area in Brazil and it is reported as an efficient nitrogen fixing bacterium associated to cowpea. Firstly, this strain was assigned as Bradyrhizobium elkanii, however, recently a more detailed genetic and molecular characterization has indicated it could be a Bradyrhizobium pachyrhizi species. We report here the draft genome sequence of B. pachyrhizi strain BR 3262, an elite bacterium used as inoculant for cowpea. The whole genome with 116 scaffolds, 8,965,178 bp and 63.8% of C+G content for BR 3262 was obtained using Illumina MiSeq sequencing technology. Annotation was added by the RAST prokaryotic genome annotation service and shown 8369 coding sequences, 52 RNAs genes, classified in 504 subsystems.


Subject(s)
Bradyrhizobium/classification , Bradyrhizobium/genetics , Nitrogen Fixation , Vigna/microbiology , Plant Root Nodulation
20.
Braz. j. microbiol ; 47(4): 781-782, Oct.-Dec. 2016.
Article in English | LILACS, VETINDEX | ID: biblio-1469631

ABSTRACT

The strain BR 3267 is a nitrogen-fixing symbiotic bacteria isolated from soil of semi-arid area of Brazilian Northeast using cowpea as the trap plant. This strain is used as commercial inoculant for cowpea and presents high efficient in nitrogen fixation as consequence of its adaptation potential to semi-arid conditions. We report here the draft genome sequence of Bradyrhizobium sp. strain BR 3267, an elite bacterium used as inoculant for cowpea. Whole genome sequencing of BR 3267 using Illumina MiSeq sequencing technology has 55 scaffolds with a total genome size of 7,904,309 bp and C+G 63%. Annotation was added by the RAST prokaryotic genome annotation service and has shown 7314 coding sequences and 52 RNA genes.


Subject(s)
Bradyrhizobium , Plant Root Nodulation/genetics , Vigna/genetics , Vigna/microbiology , Nitrogen Fixation
SELECTION OF CITATIONS
SEARCH DETAIL