Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Behav Brain Res ; 359: 66-72, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30347225

ABSTRACT

Introduction Evidence suggests early life stress impairs development, quality of life and increases vulnerability to disease. One important aspect of the stress experience is its impact on cognitive-motor performance, which includes the ability to adapt walking according to the environmental conditions. This study aimed to investigate how early-life stress affects walking adaptability of mice, while investigating BDNF/TrkB and Drd1/Drd2 expression in different brain regions. Methods Briefly, we exposed male C56BL/6 to the limited bedding protocol (LB) from post-natal day (PND) 2 to PND9 and then tested animals in the ladder walking task at PND60. RT-qPCR was used to investigate gene expression in the mPFC, hippocampus, motor cortex and cerebellum 2 h after the task Results LB induced a wide range of variability and therefore two distinct subgroups of animals within the LB group were established: a) superior performance (LB-SP); and b) inferior performance (LB-IP), compared to controls. Additionally, Drd1 gene expression was increased in the mPFC of LB-IP animals and in the cerebellum of LB-SP animals, while Drd2 expression was reduced in the hippocampus of the LB-IP group. BDNF exon IV gene expression in the mPFC and motor cortex was increased in both the LB-IP and LB-SP subgroups. TrkB gene expression in the hippocampus was reduced in the LB-IP group. A strong negative correlation was found between walking adaptability performance and BDNF exon IV gene expression in the motor cortex. Conversely, a positive correlation was found between walking adaptability performance and TrkB expression in the mPFC and a negative correlation in the hippocampus. Both Drd1 and Drd2 gene expression were negatively correlated with the ability to adapt walking. Conclusions Overall, our findings suggest exposure to early life stress leads to distinct walking adaptability phenotypes, which may be related to Drd1, Drd2, Bdnf exon IV and TrkB gene expression in brain regions that influence walking adaptability.


Subject(s)
Brain/metabolism , Stress, Psychological/physiopathology , Walking , Adaptation, Physiological/physiology , Adaptation, Psychological/physiology , Animals , Anxiety/physiopathology , Brain/growth & development , Brain-Derived Neurotrophic Factor/metabolism , Gene Expression Regulation , Male , Membrane Glycoproteins/metabolism , Mice, Inbred C57BL , Models, Animal , Phenotype , Protein-Tyrosine Kinases/metabolism , Receptors, Dopamine D1/metabolism , Receptors, Dopamine D2/metabolism , Walking/physiology
2.
Orthod Craniofac Res ; 19(3): 162-8, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27027638

ABSTRACT

OBJECTIVES: To measure the lengths of the force and resistance arms, in order to calculate the mechanical advantage and muscular work of the human temporalis muscle (TM) in brachyfacial (BR) and dolichofacial (DO) subjects. SETTING AND SAMPLE POPULATION: Mandibles from 49 subjects of both genders (BR n = 9; DO n = 40) from the collection of the Laboratory of Human Anatomy at Universidade de Santa Cruz do Sul, Rio Grande do Sul, Brazil, were analyzed. MATERIAL AND METHODS: The distance between the condylar process and the coronoid process (insertion site of the TM) represented the length of the force arm (LFA ) of the TM. The distance between the condylar process and the mental protuberance represented the length of the resistance arm (LRA ). Thus, the mechanical advantage of the TM was obtained using the following ratio: LFA /LRA , while the muscular work (LRA /LFA ) of the TM was obtained using the inverse of this ratio. RESULTS: When compared with the DO, the parameters of the BR are significantly greater, as shown by the LFA (6.0%) and mechanical advantage (8.2%; p = 0.0078). By contrast, our results show that in the DO, the LRA was 2.4% longer and the muscular work was 10.4% greater (p = 0.0087). CONCLUSION: The mechanical advantage of the TM in BR subjects is significantly greater than in DO subjects. Moreover, this greater mechanical advantage may explain, at least in part, the higher incidence of temporomandibular dysfunctions in BR subjects.


Subject(s)
Bite Force , Face/anatomy & histology , Temporal Muscle/anatomy & histology , Temporal Muscle/physiology , Temporomandibular Joint/anatomy & histology , Temporomandibular Joint/physiology , Adult , Biomechanical Phenomena , Brazil , Cephalometry , Female , Humans , Male , Mandible , Mandibular Condyle
3.
Acta Physiol (Oxf) ; 201(2): 265-73, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20698833

ABSTRACT

AIM: Changes in skeletal muscle morphology and metabolism are associated with limited functional capacity in heart failure, which can be attenuated by neuromuscular electrical stimulation (ES). The purpose of the present study was to analyse the effects of ES upon GLUT-4 protein content, fibre structure and vessel density of the skeletal muscle in a rat model of HF subsequent to myocardial infarction. METHODS: Forty-four male Wistar rats were assigned to one of four groups: sham (S), sham submitted to ES (S+ES), heart failure (HF) and heart failure submitted to ES (HF+ES). The rats in the ES groups were submitted to ES of the left leg during 20 days (2.5 kHz, once a day, 30 min, duty cycle 50%- 15 s contraction/15 s rest). After this period, the left tibialis anterior muscle was collected from all the rats for analysis. RESULTS: HF+ES rats showed lower values of lung congestion when compared with HF rats (P = 0.0001). Although muscle weight was lower in HF rats than in the S group, thus indicating hypotrophy, 20 days of ES led to their recovery (P < 0.0001). In both groups submitted to ES, there was an increase in muscle vessel density (P < 0.04). Additionally, heart failure determined a 49% reduction in GLUT-4 protein content (P < 0.03), which was recovered by ES (P < 0.01). CONCLUSION: In heart failure, ES improves morphological changes and raises GLUT-4 content in skeletal muscle.


Subject(s)
Electric Stimulation Therapy , Glucose Transporter Type 4/metabolism , Heart Failure/complications , Muscle, Skeletal/metabolism , Muscular Diseases/therapy , Animals , Heart Failure/physiopathology , Hemodynamics , Male , Muscle, Skeletal/blood supply , Muscle, Skeletal/pathology , Muscular Diseases/etiology , Muscular Diseases/metabolism , Muscular Diseases/pathology , Myocardial Infarction/complications , Rats , Rats, Wistar
4.
Phytomedicine ; 17(12): 956-62, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20833520

ABSTRACT

The goal of acetylcholinesterase inhibitors (AChEIs) used to treat Alzheimer's patients is an improvement in cholinergic transmission. While currently available AChEIs have limited success, a huge impediment to the development of newer ones is access to the relevant brain areas. Promnesic, anti-amnesic and AChEI properties were identified in a standardized ethanol extract from Ptychopetalum olacoides (POEE), a medicinal plant favored by the elderly in Amazon communities. The purpose of this study was to provide conclusive evidence that orally given POEE induces AChE inhibition in brain areas relevant to cognition. Histochemistry experiments confirmed that the anticholinesterase compound(s) present in POEE are orally bioavailable, inducing meaningful AChE inhibition in the hippocampus CA1 (∼33%) and CA3 (∼20%), and striatum (∼17%). Ellman's colorimetric analysis revealed that G1 and G4 AChE isoforms activities were markedly inhibited (66 and 72%, respectively) in hippocampus and frontal cortex (50 and 63%, respectively), while G4 appeared to be selectively inhibited (72%) in the striatum. Western blotting showed that POEE did not induce significant changes in the AChE immunocontent suggesting that its synthesis is not extensively modified. This study provides definitive proof of meaningful anticholinesterase activity compatible with the observed promnesic and anti-amnesic effects of POEE in mice, reaffirming the potential of this extract for treating neurodegenerative conditions where a hypofunctioning cholinergic neurotransmission is prominent. Adequate assessment of the safety and efficacy of this extract and/or its isolated active compound(s) are warranted.


Subject(s)
Acetylcholinesterase/metabolism , Brain/drug effects , Cholinesterase Inhibitors/pharmacology , Nootropic Agents/pharmacology , Olacaceae , Phytotherapy , Plant Extracts/pharmacology , Animals , Cognition/drug effects , Male , Mice , Mice, Inbred Strains , Neurodegenerative Diseases/drug therapy , Plant Roots , Protein Isoforms
5.
Braz. j. med. biol. res ; 43(1): 85-95, Jan. 2010. ilus
Article in English | LILACS | ID: lil-535638

ABSTRACT

The objective of the present study was to determine whether lesion of the subthalamic nucleus (STN) promoted by N-methyl-D-aspartate (NMDA) would rescue nigrostriatal dopaminergic neurons after unilateral 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB). Initially, 16 mg 6-OHDA (6-OHDA group) or vehicle (artificial cerebrospinal fluid - aCSF; Sham group) was infused into the right MFB of adult male Wistar rats. Fifteen days after surgery, the 6-OHDA and SHAM groups were randomly subdivided and received ipsilateral injection of either 60 mM NMDA or aCSF in the right STN. Additionally, a control group was not submitted to stereotaxic surgery. Five groups of rats were studied: 6-OHDA/NMDA, 6-OHDA/Sham, Sham/NMDA, Sham/Sham, and Control. Fourteen days after injection of 6-OHDA, rats were submitted to the rotational test induced by apomorphine (0.1 mg/kg, ip) and to the open-field test. The same tests were performed again 14 days after NMDA-induced lesion of the STN. The STN lesion reduced the contralateral turns induced by apomorphine and blocked the progression of motor impairment in the open-field test in 6-OHDA-treated rats. However, lesion of the STN did not prevent the reduction of striatal concentrations of dopamine and metabolites or the number of nigrostriatal dopaminergic neurons after 6-OHDA lesion. Therefore, STN lesion is able to reverse motor deficits after severe 6-OHDA-induced lesion of the nigrostriatal pathway, but does not protect or rescue dopaminergic neurons in the substantia nigra pars compacta.


Subject(s)
Animals , Male , Rats , Dopamine/physiology , Motor Activity/drug effects , Neurons/pathology , Parkinson Disease, Secondary/pathology , Substantia Nigra/cytology , Subthalamic Nucleus/injuries , Immunohistochemistry , Motor Activity/physiology , N-Methylaspartate , Neurons/drug effects , Neurons/physiology , Pharmaceutical Vehicles , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/physiopathology , Random Allocation , Rats, Wistar , Substantia Nigra/physiopathology , Subthalamic Nucleus/drug effects , Subthalamic Nucleus/pathology , Subthalamic Nucleus/surgery , /metabolism
6.
Braz J Med Biol Res ; 43(1): 85-95, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19967265

ABSTRACT

The objective of the present study was to determine whether lesion of the subthalamic nucleus (STN) promoted by N-methyl-D-aspartate (NMDA) would rescue nigrostriatal dopaminergic neurons after unilateral 6-hydroxydopamine (6-OHDA) injection into the medial forebrain bundle (MFB). Initially, 16 mg 6-OHDA (6-OHDA group) or vehicle (artificial cerebrospinal fluid - aCSF; Sham group) was infused into the right MFB of adult male Wistar rats. Fifteen days after surgery, the 6-OHDA and SHAM groups were randomly subdivided and received ipsilateral injection of either 60 mM NMDA or aCSF in the right STN. Additionally, a control group was not submitted to stereotaxic surgery. Five groups of rats were studied: 6-OHDA/NMDA, 6-OHDA/Sham, Sham/NMDA, Sham/Sham, and Control. Fourteen days after injection of 6-OHDA, rats were submitted to the rotational test induced by apomorphine (0.1 mg/kg, ip) and to the open-field test. The same tests were performed again 14 days after NMDA-induced lesion of the STN. The STN lesion reduced the contralateral turns induced by apomorphine and blocked the progression of motor impairment in the open-field test in 6-OHDA-treated rats. However, lesion of the STN did not prevent the reduction of striatal concentrations of dopamine and metabolites or the number of nigrostriatal dopaminergic neurons after 6-OHDA lesion. Therefore, STN lesion is able to reverse motor deficits after severe 6-OHDA-induced lesion of the nigrostriatal pathway, but does not protect or rescue dopaminergic neurons in the substantia nigra pars compacta.


Subject(s)
Dopamine/physiology , Motor Activity/drug effects , Neurons/pathology , Parkinson Disease, Secondary/pathology , Substantia Nigra/cytology , Subthalamic Nucleus/injuries , Animals , Immunohistochemistry , Male , Motor Activity/physiology , N-Methylaspartate , Neurons/drug effects , Neurons/physiology , Parkinson Disease, Secondary/chemically induced , Parkinson Disease, Secondary/physiopathology , Pharmaceutical Vehicles , Random Allocation , Rats , Rats, Wistar , Substantia Nigra/physiopathology , Subthalamic Nucleus/drug effects , Subthalamic Nucleus/pathology , Subthalamic Nucleus/surgery , Tyrosine 3-Monooxygenase/metabolism
7.
Article in English | MEDLINE | ID: mdl-15979914

ABSTRACT

Using an immunohistochemical procedure and optical densitometry, the distribution of neurons containing serotonin (5-HT) was investigated in the pedal ganglia of Megalobulimus abbreviatus after thermal "non-functional stimulus" (22 degrees C) and stressful thermal conditions (50 degrees C). The animals were sacrificed at different times (3 h, 6 h and 24 h) following these stimuli. In control animals, the results showed the location of these serotonergic immunoreactive elements (5HT-ir) in this ganglion to be similar to those shown in other studies, where the anterior region of ventral sections showed the largest number of 5HT-ir neurons. In the anterior neurons, significant differences (p < 0.01) were observed between the groups of animals stimulated at 50 degrees C and 22 degrees C and sacrificed after 6 h. In the medial neurons, significant differences (p < 0.05) were observed between the control group and the groups of animals stimulated at 50 degrees C and sacrificed after 6 and 24 h. Neuropilar area 1 showed differences (p < 0.01) in 5HT-ir between the control group and the groups of animals stimulated at 50 degrees C and sacrificed after 3 and 24 h. Neuropilar area 2 showed a significant difference (p < 0.05) between the groups of animals stimulated at 22 degrees C and sacrificed after 3 and 24 h. These results suggest the involvement of 5-HT in the nociceptive circuit of M. abbreviatus, mainly that of the medial neurons and neuropilar area 1, which showed increases in 5HT-ir after thermal aversive stimuli. These results could be helpful in drawing cellular homologies with other gastropods.


Subject(s)
Ganglia, Invertebrate/immunology , Serotonin/physiology , Snails/physiology , Animals , Ganglia, Invertebrate/physiology , Hot Temperature , Immunohistochemistry , Neurons/chemistry , Nociceptors/physiology , Snails/cytology
8.
Braz J Med Biol Res ; 38(1): 73-80, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15665992

ABSTRACT

We describe the behavior of the snail Megalobulimus abbreviatus upon receiving thermal stimuli and the effects of pretreatment with morphine and naloxone on behavior after a thermal stimulus, in order to establish a useful model for nociceptive experiments. Snails submitted to non-functional (22 degrees C) and non-thermal hot-plate stress (30 degrees C) only displayed exploratory behavior. However, the animals submitted to a thermal stimulus (50 degrees C) displayed biphasic avoidance behavior. Latency was measured from the time the animal was placed on the hot plate to the time when the animal lifted the head-foot complex 1 cm from the substrate, indicating aversive thermal behavior. Other animals were pretreated with morphine (5, 10, 20 mg/kg) or naloxone (2.5, 5.0, 7.5 mg/kg) 15 min prior to receiving a thermal stimulus (50 degrees C; N = 9 in each group). The results (means +/- SD) showed an extremely significant difference in response latency between the group treated with 20 mg/kg morphine (63.18 +/- 14.47 s) and the other experimental groups (P < 0.001). With 2.5 mg/kg (16.26 +/- 3.19 s), 5.0 mg/kg (11.53 +/- 1.64 s) and 7.5 mg/kg naloxone (7.38 +/- 1.6 s), there was a significant, not dose-dependent decrease in latency compared to the control (33.44 +/- 8.53 s) and saline groups (29.1 +/- 9.91 s). No statistically significant difference was found between the naloxone-treated groups. With naloxone plus morphine, there was a significant decrease in latency when compared to all other groups (minimum 64% in the saline group and maximum 83.2% decrease in the morphine group). These results provide evidence of the involvement of endogenous opioid peptides in the control of thermal withdrawal behavior in this snail, and reveal a stereotyped and reproducible avoidance behavior for this snail species, which could be studied in other pharmacological and neurophysiological studies.


Subject(s)
Analgesics, Opioid/pharmacology , Behavior, Animal/drug effects , Hot Temperature , Morphine/pharmacology , Naloxone/pharmacology , Snails/drug effects , Animals , Body Temperature Regulation/drug effects , Naloxone/antagonists & inhibitors , Reaction Time/drug effects , Thermoreceptors/drug effects
9.
Braz. j. med. biol. res ; 38(1): 73-80, Jan. 2005. ilus, graf
Article in English | LILACS | ID: lil-405539

ABSTRACT

We describe the behavior of the snail Megalobulimus abbreviatus upon receiving thermal stimuli and the effects of pretreatment with morphine and naloxone on behavior after a thermal stimulus, in order to establish a useful model for nociceptive experiments. Snails submitted to non-functional (22°C) and non-thermal hot-plate stress (30°C) only displayed exploratory behavior. However, the animals submitted to a thermal stimulus (50°C) displayed biphasic avoidance behavior. Latency was measured from the time the animal was placed on the hot plate to the time when the animal lifted the head-foot complex 1 cm from the substrate, indicating aversive thermal behavior. Other animals were pretreated with morphine (5, 10, 20 mg/kg) or naloxone (2.5, 5.0, 7.5 mg/kg) 15 min prior to receiving a thermal stimulus (50°C; N = 9 in each group). The results (means ± SD) showed an extremely significant difference in response latency between the group treated with 20 mg/kg morphine (63.18 ± 14.47 s) and the other experimental groups (P < 0.001). With 2.5 mg/kg (16.26 ± 3.19 s), 5.0 mg/kg (11.53 ± 1.64 s) and 7.5 mg/kg naloxone (7.38 ± 1.6 s), there was a significant, not dose-dependent decrease in latency compared to the control (33.44 ± 8.53 s) and saline groups (29.1 ± 9.91 s). No statistically significant difference was found between the naloxone-treated groups. With naloxone plus morphine, there was a significant decrease in latency when compared to all other groups (minimum 64 percent in the saline group and maximum 83.2 percent decrease in the morphine group). These results provide evidence of the involvement of endogenous opioid peptides in the control of thermal withdrawal behavior in this snail, and reveal a stereotyped and reproducible avoidance behavior for this snail species, which could be studied in other pharmacological and neurophysiological studies.


Subject(s)
Animals , Analgesics, Opioid/pharmacology , Behavior, Animal/drug effects , Hot Temperature , Morphine/pharmacology , Naloxone/pharmacology , Snails/drug effects , Body Temperature Regulation/drug effects , Naloxone/antagonists & inhibitors , Reaction Time/drug effects , Thermoreceptors/drug effects
10.
Braz J Med Biol Res ; 36(4): 515-20, 2003 Apr.
Article in English | MEDLINE | ID: mdl-12700831

ABSTRACT

Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anterior funiculi. After axotomy, substance P immunoreactive fibers were reduced slightly on the side of the lesion, which was located in long fibers that invaded synaptic field III and in the varicosities of the lateral and anterior funiculus. The changes were observed at 7 days after axonal injury and persisted at 15, 30, 60 and 90 days after the lesion. These findings show that turtles should be considered as a model to study the role of substance P in peripheral axonal injury, since the distribution and temporal changes of substance P were similar to those found in mammals.


Subject(s)
Axons/chemistry , Peripheral Nervous System/injuries , Spinal Cord/chemistry , Substance P/analysis , Turtles , Animals , Axotomy , Female , Immunohistochemistry , Male , Sciatic Nerve/injuries , Substance P/physiology , Time Factors
11.
Braz. j. med. biol. res ; 36(4): 515-520, Apr. 2003. ilus, graf
Article in English | LILACS | ID: lil-331223

ABSTRACT

Immunoreactive substance P was investigated in turtle lumbar spinal cord after sciatic nerve transection. In control animals immunoreactive fibers were densest in synaptic field Ia, where the longest axons invaded synaptic field III. Positive neuronal bodies were identified in the lateral column of the dorsal horn and substance P immunoreactive varicosities were observed in the ventral horn, in close relationship with presumed motoneurons. Other varicosities appeared in the lateral and anterior funiculi. After axotomy, substance P immunoreactive fibers were reduced slightly on the side of the lesion, which was located in long fibers that invaded synaptic field III and in the varicosities of the lateral and anterior funiculus. The changes were observed at 7 days after axonal injury and persisted at 15, 30, 60 and 90 days after the lesion. These findings show that turtles should be considered as a model to study the role of substance P in peripheral axonal injury, since the distribution and temporal changes of substance P were similar to those found in mammals


Subject(s)
Animals , Female , Axons , Spinal Cord , Substance P , Turtles , Axotomy , Immunohistochemistry , Sciatic Nerve , Substance P , Time Factors
12.
Article in English | MEDLINE | ID: mdl-10629952

ABSTRACT

Glycogen phosphorylase (GP) and cytochrome oxidase (CO) activities were mapped histochemically in the brain of the turtle Trachemys dorbigni. In the telencephalon, both activities occurred in the olfactory bulb, in all cortical areas, in the dorsal ventricular ridge, striatum, primordium hippocampi and olfactory tubercle. In the diencephalon, they were identified in some areas of the hypothalamus, and in rotundus and geniculate nuclei. Both reactions were detected in the oculomotor, trochlear, mesencephalic trigeminal nuclei, the nucleus of the posterior commissure, torus semicircularis, substantia nigra and ruber and isthmic nuclei of the mesencephalon. In all layers of the optic tectum GP activity was found, but CO only labelled the stratum griseum centrale. In the medulla oblonga both enzymes appear in the reticular, raphe and vestibular nuclei, locus coeruleus and nuclei of cranial nerves. In the cerebellum, the granular and molecular layers, and the deep cerebellar nuclei were positive for both enzymes. The Purkinje cells were only reactive for CO. In the spinal cord, motor and commissural neurones exhibited a positive reaction for the two enzymes. However, CO also occurred in the marginal nucleus and in the lateral funiculus. These results may be useful as a basis for subsequent studies on turtle brain metabolism.


Subject(s)
Brain/enzymology , Electron Transport Complex IV/metabolism , Phosphorylases/metabolism , Animals , Female , Histocytochemistry , Male , Turtles
SELECTION OF CITATIONS
SEARCH DETAIL
...