Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 18(47): 32477-32485, 2016 Nov 30.
Article in English | MEDLINE | ID: mdl-27869260

ABSTRACT

We report thermally induced rapid phase separation in PS/PVME polymer blends using a unique contact free droplet based architecture. De-mixing of homogeneous blends due to inter component dynamic asymmetry is aggravated by the externally supplied heat. Separation of polymer blends is usually investigated in the bulk which is a tedious process and requires several hours for completion. Alternatively, separation in droplet configuration reduces the process timescale by about 3-5 orders due to a constrained micron-sized domain [fast processing and high throughput] while maintaining similar separation morphologies as in the bulk. We observed the effect of heating rates on the phase separation length and timescales. Furthermore, the separation length scale can be precisely controlled across one order by simply tuning the heating rate. The methodology can be scaled up for applications ranging from surface patterning to pharmaceutics.

2.
Phys Chem Chem Phys ; 18(42): 29226-29238, 2016 Oct 26.
Article in English | MEDLINE | ID: mdl-27731428

ABSTRACT

In this study we have assessed, using dielectric relaxation spectroscopy (DRS), the confinement effects of the more mobile chain in partially miscible polymeric blends of PS/PVME (polystyrene/poly(vinyl methyl ether)) in the presence of anisotropically shaped MWCNTs (multiwalled carbon nanotubes). To understand if this confinement effect is very specific to MWCNTs, the characteristic dimensions of which are often close to the radius of gyration of the polymeric chains, a few other particles like spherical silver, stacked clay tactoids and platy graphene sheets at similar weight fractions were also incorporated and systematically studied. The DRS studies reveal that the more mobile chain (here PVME) experiences possibly two different environments in the presence of frozen PS and more importantly in the presence of MWCNTs at temperatures close to and not so far from the blend Tg. The presence of bimodal relaxations with a weak temperature independent faster relaxation in the blends is composition dependent (PS rich blends). Assuming that there are no chemical interactions of PVME with the particles, these confinement effects seem to be very specific to MWCNTs as the bimodal relaxations were completely absent in the case of other nanoparticles. In the case of polymer blends, when two different chains are brought together, a loss in the deformational entropy is expected due to the excluded volume interaction and chain connectivity effects. In the presence of nanoparticles, especially MWCNTs, the polymer coils are subjected to perturbation leading to entropic loss in the system, which determine the miscibility in the blends. The configurational entropy near glass transition was assessed to understand the improved miscibility due to MWCNTs in this particular blend. The length of cooperativity suggests a cooperative motion of PS and PVME over shorter length scales in the case of MWCNTs as compared to other particles. This also hints at perturbed PVME motion in the network of MWCNTs. Taken together, our study reveals that the kinetic PVME arrest results in two different environments and is dependent on the effective concentration of MWCNTs in the blends.

3.
Phys Chem Chem Phys ; 18(1): 47-64, 2016 Jan 07.
Article in English | MEDLINE | ID: mdl-26601893

ABSTRACT

The use of copolymer and polymer blends widened the possibility of creating materials with multilayered architectures. Hierarchical polymer systems with a wide array of micro and nanostructures are generated by thermally induced phase separation (TIPS) in partially miscible polymer blends. Various parameters like the interaction between the polymers, concentration, solvent/non-solvent ratio, and quenching temperature have to be optimized to obtain these micro/nanophase structures. Alternatively, the addition of nanoparticles is another strategy to design materials with desired hetero-phase structures. The dynamics of the polymer nanocomposite depends on the statistical ordering of polymers around the nanoparticle, which is dependent on the shape of the nanoparticle. The entropic loss due to deformation of polymer chains, like the repulsive interactions due to coiling and the attractive interactions in the case of swelling has been highlighted in this perspective article. The dissipative particle dynamics has been discussed and is correlated with the molecular dynamics simulation in the case of polymer blends. The Cahn-Hillard-Cook model on variedly shaped immobile fillers has shown difference in the propagation of the composition wave. The nanoparticle shape has a contributing effect on the polymer particle interaction, which can change the miscibility window in the case of these phase separating polymer blends. Quantitative information on the effect of spherical particles on the demixing temperature is well established and further modified to explain the percolation of rod shaped particles in the polymer blends. These models correlate well with the experimental observations in context to the dynamics induced by the nanoparticle in the demixing behavior of the polymer blend. The miscibility of the LCST polymer blend depends on the enthalpic factors like the specific interaction between the components, and the solubility product and the entropic losses occurring due to the formation of any favorable interactions. Hence, it is essential to assess the entropic and enthalpic interactions induced by the nanoparticles independently. The addition of nanoparticles creates heterogeneity in the polymer phase it is localized. This can be observed as an alteration in the relaxation behavior of the polymer. This changes the demixing behavior and the interaction parameter between the polymers. The compositional changes induced due to the incorporation of nanoparticles are also attributed as a reason for the altered demixing temperature. The particle shape anisotropy causes a direction dependent depletion, which changes the phase behavior of the blend. The polymer-grafted nanoparticles with varying grafting density show tremendous variation in the miscibility of the blend. The stretching of the polymer chains grafted on the nanoparticles causes an entropy penalty in the polymer blend. A comparative study on the different shaped particles is not available up to date for understanding these aspects. Hence, we have juxtaposed the various computational studies on nanoparticle dynamics, the shape effect of NPs on homopolymers and also the cases of various polymer blends without nanoparticles to sketch a complete picture on the effect of various particles on the miscibility of LCST blends.

4.
Phys Chem Chem Phys ; 17(22): 14972-85, 2015 Jun 14.
Article in English | MEDLINE | ID: mdl-25982342

ABSTRACT

The demixing behavior, transient morphologies and mechanism of phase separation in PS/PVME blends were greatly altered in the presence of a very low concentration of rod-like particles (multiwall carbon nanotubes, MWNTs). This phenomenon is due to the specific interaction of one of the phases (PVME) with the anisotropic MWNTs, which creates a heterogeneous environment in the blend. This specific interaction alters the chain dynamics in the interfacial region as against the bulk. A comprehensive analysis using isochronal temperature sweep was performed to understand the demixing temperature in the blends. The evolution of phase morphology as a function of time and temperature was assessed by polarizing optical microscopy (POM), atomic force microscopy (AFM) and scanning electron microscopy (SEM). The addition of MWNTs increased the rheological demixing temperature and the spinodal temperature in almost all the compositions. The intriguing transient morphologies were mapped, which varied from nucleation and growth to coalescence-induced viscoelastic phase separation (C-VPS) in PVME-rich blends, to spinodal decomposition in the near-critical compositions, to transient gel-induced VPS (T-VPS) in the PS-rich compositions. Mapping of the morphology development displayed two types of fracture mechanisms: ductile fracture for near-critical compositions and brittle fracture for off-critical composition. The change in the phase separation mechanism in the presence of MWNTs was due to the variation in dynamic asymmetry brought about by these anisotropic particles. All these observations were correlated by POM, SEM and AFM studies. The length of the cooperatively rearranging region (CRR), as evaluated using modulated differential scanning calorimetry (MDSC) measurements, was found to be composition-independent. The observed variation of effective glass transition of PVME (low Tg component) on blending with PS (high Tg component) and by the addition of MWNTs accounts for the dynamic heterogeneity introduced by MWNTs in the system.

5.
Phys Chem Chem Phys ; 17(2): 868-77, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25277363

ABSTRACT

Blends of bromo-terminated polystyrene (PS-Br) and poly(vinyl methylether) (PVME) exhibit lower critical solution temperatures. In this study, PS-Br was designed by atom transfer radical polymerization and was converted to thiol-capped polystyrene (PS-SH) by reacting with thiourea. The silver nanoparticles (nAg) were then decorated with covalently bound PS-SH macromolecules to improve the phase miscibility in the PS-Br-PVME blends. Thermally induced demixing in this model blend was followed in the presence of polystyrene immobilized silver nanoparticles (PS-g-nAg). The graft density of the PS macromolecules was estimated to be ca. 0.78 chains per nm(2). Although the matrix and the grafted molecular weights were similar, PS-g-nAg particles were expelled from the PS phase and were localized in the PVME phase of the blends. This was addressed with respect to intermediate graft density and favourable PS-PVME contacts from microscopic interactions point of view. Interestingly, blends with 0.5 wt% PS-g-nAg delayed the spinodal decomposition temperature in the blends by ca. 18 °C with respect to the control blends. The scale of cooperativity, as determined by differential scanning calorimetry, increased only marginally in the case of PS-g-nAg; however, it increased significantly in the presence of bare nAg particles.

6.
Phys Chem Chem Phys ; 16(39): 21300-9, 2014 Oct 21.
Article in English | MEDLINE | ID: mdl-25178100

ABSTRACT

The effect of silver nanoparticles (sNP) on the demixing and the evolution of morphology in off-critical blends of 90/10 and 10/90 (wt/wt) PS/PVME [polystyrene/poly(vinyl methyl ether)] was probed here using shear rheology and optical microscopy. The faster component (PVME) has a higher molecular weight (80 kDa) than the slower component (PS, 35 kDa), which makes this system quite interesting to study with respect to the evolving morphology, as the blends transit through the binodal and the spinodal envelopes. An unusual demixing behavior was observed in both PVME rich and PS rich blends. Temperature modulated differential scanning calorimetry measurements showed that the Tg value for the blends with sNP was slightly lower than that of the neat blends. A decreased volume of cooperativity at Tg suggests confined segmental dynamics in the presence of sNP. Although, the addition of sNP had no influence on the thermodynamic demixing temperature, it significantly altered the elasticity of the minor component during the transition of the blend from the homogeneous to the heterogeneous state. This is manifested from energetically driven localization of the sNP in the PVME phase during demixing. As a direct consequence of this, the formation of the microstructures upon demixing was observed to be delayed in the presence of sNP. Interestingly, in the intermediate quench depth, the higher viscoelastic phase evolved as an interconnected network, which subsequently coarsened into discrete droplets in the late stages for the 90/10 PS/PVME blends. Similar observations were made for 10/90 PS/PVME blends where threads of PVME appeared at deeper quench depths in the presence of sNP. The interconnected network formation of the minor phase (here PVME), which is also the faster component in the blend, was different from the usual demixing behavior.

7.
Phys Chem Chem Phys ; 16(33): 17811-21, 2014 Sep 07.
Article in English | MEDLINE | ID: mdl-25033300

ABSTRACT

The demixing of polystyrene (PS) and poly(vinyl methylether) (PVME) was systematically investigated in the presence of surface functionalized multiwall carbon nanotubes (MWNTs) by melt rheology. As PS-PVME blends are weakly interacting blends, the contribution of conformational entropy increases, resulting in thermo-rheological complexity wherein the concentration fluctuation persists even beyond the critical demixing temperature. These phenomenal changes were followed here in the presence of MWNTs with different surface functional groups. Polystyrene was synthesised by atom transfer radical polymerization and was immobilized onto carboxyl acid functionalized multiwall carbon nanotubes (COOH-MWNTs) via nitrene chemistry in order to improve the phase miscibility in PS-PVME blends. Interestingly, blends with 0.25 wt% polystyrene grafted multiwall carbon nanotubes (PS-g-MWNTs) delayed the spinodal decomposition temperature in the blends by ∼33 °C with respect to both control blends and those with COOH-MWNTs. While the localization of COOH-MWNTs in PVME was explained from a thermodynamic point of view, the localization of PS-g-MWNTs was understood to result from favorable PS-PVME contact and the degree of surface coverage of PS on the surface of MWNTs. The length of the cooperative rearranging region (ξ) decreased in presence of PS-g-MWNTs, suggesting confinement effects on large scale motions and enhanced interchain concentration fluctuation.

8.
Phys Chem Chem Phys ; 16(20): 9309-16, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24714668

ABSTRACT

The present paper discusses the effect of multiwall carbon nanotubes (MWNTs) on the structural relaxation and the intermolecular cooperativity in dynamically asymmetric blends of PS/PVME (polystyrene/poly(vinyl methyl ether)). The temperature regime where chain connectivity effects dominate the thermodynamic concentration fluctuation (T/Tg > 0.75, Tg is the glass transition temperature of the blends) was studied using dielectric spectroscopy (DS). Interestingly, in the blends with MWNTs a bimodal distribution of relaxation was obtained in the loss modulus spectra. This plausibly is due to different environments experienced by the faster component (PVME) in the presence of MWNTs. The segmental dynamics of PVME was observed to be significantly slowed down in the presence of MWNTs and an Arrhenius-type behavior, weakly dependent on temperature, is observed at higher frequencies. This non-equilibrium dynamics of PVME is presumed to be originating from interphase regions near the surface of MWNTs. The length scale of the cooperative rearranging region (ξCRR) at Tg, assessed by calorimetric measurements, was observed to be higher in the case of blends with MWNTs. An enhanced molecular level miscibility driven by MWNTs in the blends corroborates with the larger ξCRR and comparatively more number of segments in CRR (in contrast to neat blends) around Tg. The configurational entropy and length scale of the cooperative volume was mapped as a function of temperature in the temperature regime, Tg < T < Tg + 60 K. The blends phase separated by spinodal decomposition which further led to an interconnected PVME network in PS. This further led to materials with very high electrical conductivity upon demixing.

9.
J Phys Chem B ; 118(8): 2214-25, 2014 Feb 27.
Article in English | MEDLINE | ID: mdl-24502623

ABSTRACT

The effect of silver nanoparticles (nAg) in PS/PVME [polystyrene/poly(vinyl methyl ether)] blends was studied with respect to the evolution of morphology, demixing temperature, and segmental dynamics. In the early stage of demixing, PVME developed an interconnected network that coarsened in the late stage. The nAg induced miscibility in the blends as supported by shear rheological measurements. The physicochemical processes that drive phase separation in blends also led to migration of nAg to the PVME phase as supported by AFM. The segmental dynamics was greatly influenced by the presence of nAg due to the specific interaction of nAg with PVME. Slower dynamics and an increase in intermolecular cooperativity in the presence of nAg further supported the role of nAg in delaying the phase separation processes and augmenting the demixing temperature in the blends. Different theoretical models were assessed to gain insight into the dynamic heterogeneity in PS/PVME blends at different length scales.

10.
J Phys Chem B ; 117(28): 8633-46, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23790191

ABSTRACT

The effects of multiwalled carbon nanotubes (MWNTs) on the concentration fluctuations, interfacial driven elasticity, phase morphology, and local segmental dynamics of chains for near-critical compositions of polystyrene/poly(vinyl methyl ether) (PS/PVME) blends were systematically investigated using dynamic shear rheology and dielectric spectroscopy. The contribution of the correlation length (ξ) of the concentration fluctuations to the evolving stresses was monitored in situ to probe the different stages of demixing in the blends. The classical upturn in the dynamic moduli was taken as the rheological demixing temperature (T(rheo)), which was also observed to be in close agreement with those obtained using concentration fluctuation variance, <(δϕ)(2)>, versus temperature curves. Further, Fredrickson and Larson's approach involving the mean-field approximation and the double-reptation self-concentration (DRSC) model was employed to evaluate the spinodal decomposition temperature (T(s)). Interestingly, the values of both T(rheo) and T(s) shifted upward in the blends in the presence of MWNTs, manifesting in molecular-level miscibility. These phenomenal changes were further observed to be a function of the concentration of MWNTs. The evolution of morphology as a function of temperature was studied using polarized optical microscopy (POM). It was observed that PVME, which evolved as an interconnected network during the early stages of demixing, coarsened into a matrix-droplet morphology in the late stages. The preferential wetting of PVME onto MWNTs as a result of physicochemical interactions retained the interconnected network of PVME for longer time scales, as supported by POM and atomic force microscopy (AFM) images. Microscopic heterogeneity in macroscopically miscible systems was studied by dielectric relaxation spectroscopy. The slowing of segmental relaxations in PVME was observed in the presence of both "frozen" PS and MWNTs interestingly at temperatures much below the calorimetric glass transition temperature (T(g)). This phenomenon was observed to be local rather than global and was addressed by monitoring the evolution of the relaxation spectra near and above the demixing temperature.

SELECTION OF CITATIONS
SEARCH DETAIL
...