Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
1.
J Clin Med ; 11(16)2022 Aug 20.
Article in English | MEDLINE | ID: mdl-36013124

ABSTRACT

The characteristics of physiologic hemodynamic coherence are not well-investigated. We examined the physiological relationship between circulating blood volume, sublingual microcirculatory perfusion, and tissue oxygenation in anesthetized individuals with steady-state physiology. We assessed the correlation of mean circulatory filling pressure analogue (Pmca) with sublingual microcirculatory perfusion and red blood cell (RBC) velocity using SDF+ imaging and a modified optical flow-based algorithm. We also reconstructed the 2D microvessels and applied computational fluid dynamics (CFD) to evaluate the correlation of Pmca and RBC velocity with the obtained pressure and velocity fields in microvessels from CFD (pressure difference, (Δp)). Twenty adults with a median age of 39.5 years (IQR 35.5−44.5) were included in the study. Sublingual velocity distributions were similar and followed a log-normal distribution. A constant Pmca value of 14 mmHg was observed in all individuals with sublingual RBC velocity 6−24 µm s−1, while a Pmca < 14 mmHg was observed in those with RBC velocity > 24 µm s−1. When Pmca ranged between 11 mmHg and 15 mmHg, Δp fluctuated between 0.02 Pa and 0.1 Pa. In conclusion, the intact regulatory mechanisms maintain a physiological coupling between systemic hemodynamics, sublingual microcirculatory perfusion, and tissue oxygenation when Pmca is 14 mmHg.

2.
Comput Biol Med ; 140: 105072, 2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34856465

ABSTRACT

BACKGROUND: Carotid endarterectomy (CEA) remains the first-line treatment option of symptomatic and asymptomatic carotid stenosis, while stenting (CAS) is reserved for selected patients at high surgical risk. Here, we compare the vascular remodeling process in CEA- and CAS-treated patients with respect to morphological and hemodynamic features, because of their possible engagement in carotid atherosclerosis. METHODS: Twelve (12) patients were included, half with patched CEA and half with CAS. Pre- and post-operative 3D image-based models of the carotid bifurcation were anatomically characterized in terms of flare, tortuosity, and curvature. Individual computational fluid dynamics simulations allowed to quantify the postoperative hemodynamic milieu in terms of (1) wall shear stress and (2) helical flow. RESULTS: Carotid flare increased in all cases, but a more marked increase emerged after CEA compared to CAS. Tortuosity and curvature increased after CEA but decreased after CAS. CEA patients presented with significantly higher postoperative tortuosity than CAS patients. CEA was associated with a worse (non-statistically significant) score in all flow disturbance indicators vs. CAS. CONCLUSION: The increased flare and tortuosity of the carotid bifurcation after CEA vs. CAS is a marked difference in the vascular remodeling process between the two modalities. CAS seems to induce a less pro-restenosis hemodynamic environment compared to CEA. The emerged differences stimulate further analysis on a larger cohort with long-term outcomes, to shed light on the clinical impact of the observations.

3.
Vasc Endovascular Surg ; 55(8): 907-909, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34348516

ABSTRACT

Hybrid endograft combinations of two or more different types of covered stents are rarely reported to treat complex abdominal aortic aneurysm cases or primary and secondary endoleaks. Clinical and laboratory data regarding the clinical efficacy and mechanical stability of such combinations are lacking. Based on a recently published case report, we describe and comment on the hemodynamic profile of a representative simulated hybrid case of AFX and Nitinol-based proximal cuff and support the stability of this combination in non-angulated cases.


Subject(s)
Aortic Aneurysm, Abdominal , Blood Vessel Prosthesis Implantation , Endovascular Procedures , Alloys , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/surgery , Blood Vessel Prosthesis , Blood Vessel Prosthesis Implantation/adverse effects , Endovascular Procedures/adverse effects , Hemodynamics , Humans , Hydrodynamics , Prosthesis Design , Stents , Treatment Outcome
4.
Ann Vasc Surg ; 74: 400-409, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33819590

ABSTRACT

BACKGROUND: The bifurcated AFX (Endologix, Inc, Irvine, CA, USA) aortic stent-graft is the sole unibody endograft for the management of Abdominal Aortic Aneurysms (AAA). In order to improve the AFX central sealing and clinical efficacy in challenging cases, a replacement of the central chromium-cobaltium AFX extension with a Nitinol-based proximal aortic cuff has been suggested. Yet, comparative data regarding the hemodynamic performance of this design is missing. Aim of this study was to compare the displacement forces (DF) acting on the hybrid AFX-Endurant design, with the classic AFX and Endurant endografts, in angulated and non-angulated cases based on patient-specific Computational Fluid Dynamics (CFD) simulations. METHODS: 3D endograft models of 11 treated AAA cases were reconstructed from Computed Tomography Angiography (CTA) imaging data: 5 cases of AFX, 3 cases of the combination AFX-Endurant and 3 cases of the classic Endurant design. The DF on the main-body, the iliac limbs, and the entire stent-graft was calculated by processing the velocity and pressure fields generated by pulsatile CFD simulations. RESULTS: The range of total DF (acting on the whole endograft structure) in the AFX, hybrid AFX-Endurant and Endurant group was 2.5-5.2N, 2.0-5.9N and 1.9-2.9N respectively, with the maximum total DF being lower for Endurant. The DF on the main-body of the classic and hybrid AFX cases were higher than the right and left iliac limbs (2.5-4.9N vs. 0.6-5.3N and 0.7-3.6N respectively). Conversely, the DF on the main-body of the Endurant cases was comparable to the force exerted on the right and left limbs. When separating the cases with respect to their neck angulation, the DF on all endograft parts (main-body, limbs) and on the endograft as a whole were lower for the hybrid AFX-Endurant group compared to the classic AFX and Endurant groups, for cases with almost straight neck. CONCLUSION: The off-label use of the hybrid AFX-Endurant stent-graft does not seem superior to the conventional AFX or Endurant endografts in angulated cases but was associated with lower DF than AFX or Endurant in non-angulated cases. The clinical value and utility of these findings remain to be elucidated.


Subject(s)
Aortic Aneurysm, Abdominal/physiopathology , Blood Vessel Prosthesis , Computer Simulation , Models, Cardiovascular , Stents , Alloys , Aortic Aneurysm, Abdominal/surgery , Computed Tomography Angiography , Humans , Prosthesis Design , Vascular Grafting
5.
Eur J Vasc Endovasc Surg ; 58(4): 538-547, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31431336

ABSTRACT

OBJECTIVES: The implication of haemodynamics in the occurrence of complications after endovascular aneurysm repair (EVAR) has been raised in the literature. Different aortic stent graft configurations may lead to different haemodynamic properties. The current study deals with the post-operative haemodynamic variability between four stent graft systems with different structure, material, and type of fixation. METHODS: Computed tomography data of 32 patients were used, equally distributed among the four endograft groups, namely the AFX, Endurant, Excluder, and Nellix. Velocity, wall shear stress (WSS), and helicity statistics were calculated, in regions around the flow division where disturbances are expected. The haemodynamic data were compared between and within the groups. RESULTS: The morphology of AAAs pre-operatively did not vary significantly among the four groups. Before the flow division, lowest velocity was observed in Endurant cases and highest in Nellix cases. Endurant induced the lowest peak WSS and Nellix the highest (p = .03). The helicity levels were low in AFX and Nellix cases and high in Endurant and Excluder cases. After the flow division, the trend in the results was preserved. Nellix induced the highest velocity and WSS, followed closely by Excluder and AFX. There was a significant increase of helicity before and after flow division in AFX (p <0.001, R2 = 0.09) and Nellix (p <0.001) cases. CONCLUSIONS: It has been shown that different types of endografts induce variable haemodynamic conditions around the flow division. The parallel limb structure, featured by Nellix, seems to induce favourable flow conditions in terms of velocity and WSS, while helical flow before the flow division is suppressed. High WSS is generally considered to be a desirable flow characteristic in endovascular devices, whereas helicity extremes (very low or high) are potentially a negative sign. Endurant, with the stiffer material and the short neck structure, was associated with the lowest blood velocity and WSS values but preserved high helicity levels. The AFX and Excluder, which include the same material, induced similar haemodynamic conditions.


Subject(s)
Aortic Aneurysm, Abdominal/surgery , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Endovascular Procedures/instrumentation , Hemodynamics , Stents , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/physiopathology , Aortography/methods , Blood Flow Velocity , Blood Vessel Prosthesis Implantation/adverse effects , Computed Tomography Angiography , Endovascular Procedures/adverse effects , Humans , Models, Cardiovascular , Patient-Specific Modeling , Prosthesis Design , Treatment Outcome
6.
J Biomech ; 94: 170-179, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31421805

ABSTRACT

During the last years endovascular aneurysm repair (EVAR) became the elective treatment for abdominal aortic aneurysms (AAAs) thanks to lower mortality and morbidity rates than open surgery. In face of these advantages, stent-graft performances are still clinically suboptimal. In particular, post-surgical complications derive from device migration as a consequence of the hemodynamic forces acting on the endograft. In this regard, while the importance of hemodynamic surface forces is well recognized, the role of the in-stent flow is still unclear. Here we hypothesize that in-stent helical blood flow patterns might influence the distribution of the displacement forces (DFs) acting on the stent-graft and, ultimately, the risk of stent migration. To test this hypothesis, the hemodynamics of 20 post-EVAR models of patients treated with two different commercial endografts was analyzed using computational hemodynamics. The main findings of the study indicate that: (1) helical flow intensity decreases the risk of endograft migration, as given by an inverse correlation between helicity intensity (h2) and time-averaged displacement forces (TADFs) (p < 0.05); (2) unbalanced counter-rotating helical structures in the legs of the device contribute, in particular along the systole, to significantly suppress TADFs (p < 0.01); (3) as expected, helical flow intensity is positively correlated with pressure drop and resistance to flow (p < 0.001). The findings of this study suggest that a design strategy promoting in-stent helical flow structures could contribute to minimize the risk of migration of implanted EVAR devices.


Subject(s)
Aortic Aneurysm, Abdominal/physiopathology , Aortic Aneurysm, Abdominal/surgery , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Endovascular Procedures/instrumentation , Stents/adverse effects , Hemodynamics , Humans , Male , Prosthesis Design , Plastic Surgery Procedures , Risk , Thrombosis/physiopathology
8.
J Biomech Eng ; 140(11)2018 Nov 01.
Article in English | MEDLINE | ID: mdl-30029263

ABSTRACT

Endovascular aneurysm repair (EVAR) has disseminated rapidly as an alternative to open surgical repair for the treatment of abdominal aortic aneurysms (AAAs), because of its reduced invasiveness, low mortality, and morbidity rate. The effectiveness of the endovascular devices used in EVAR is always at question as postoperative adverse events can lead to re-intervention or to a possible fatal scenario for the circulatory system. Motivated by the assessment of the risks related to thrombus formation, here the impact of two different commercial endovascular grafts on local hemodynamics is explored through 20 image-based computational hemodynamic models of EVAR-treated patients (N = 10 per each endograft model). Hemodynamic features, susceptible to promote thrombus formation, such as flow separation and recirculation, are quantitatively assessed and compared with the local hemodynamics established in image-based infrarenal abdominal aortic models of healthy subjects (N = 10). Moreover, the durability of endovascular devices is investigated analyzing the displacement forces (DFs) acting on them. The hemodynamic analysis is complemented by a geometrical characterization of the EVAR-induced reshaping of the infrarenal abdominal aortic vascular region. The findings of this study indicate that (1) the clinically observed propensity to thrombus formation in devices used in EVAR strategies can be explained in terms of local hemodynamics by means of image-based computational hemodynamics approach; (2) reportedly prothrombotic hemodynamic structures are strongly associated with the geometry of the aortoiliac tract postoperatively; and (3) DFs are associated with cross-sectional area of the aortoiliac tract postoperatively. In perspective, our study suggests that future clinical followup studies could include a geometric analysis of the region of the implant, monitoring shape variations that can lead to hemodynamic disturbances of clinical significance.

9.
Interact Cardiovasc Thorac Surg ; 26(5): 826-833, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29325136

ABSTRACT

OBJECTIVES: The objective of this study is to analyse the flow conditions in the AFX and Nellix endografts (EGs) accounting for their postimplantation configuration in patients with an endovascular aneurysm repair-treated abdominal aortic aneurysm. METHODS: We reconstructed post-endovascular aneurysm repair computed tomography scans of patients treated with an AFX or Nellix EG creating post-implantation EG models. We examined 16 patients, 8 in each group. The blood flow properties were obtained by computational fluid dynamics simulations and were subsequently compared with physiological infrarenal blood flow properties measured in 5 healthy subjects. Specifically, pressure drop, maximum velocity and wall shear stress were measured at peak systole and mean helicity at mid-diastole. RESULTS: Our statistical analyses showed that the haemodynamic properties in both control regions did not vary statistically after the implantation of either the AFX or the Nellix EG, except for helicity that was significantly lower in the abdominal part of the Nellix EG compared with the expected physiological measurement. Regardless of the overall blood flow restoration, it is important to note that low pressure drop was detected along the limbs of the AFX and suppressed blood helical motion was detected at the entrance of the Nellix device. CONCLUSIONS: It is observed from the results that the AFX EG has achieved absolute restoration of blood flow after endovascular aneurysm repair, although the development of secondary flow in the upper part of the EG and the low pressure drop in its limbs should be acknowledged. The Nellix EG also seems to be haemodynamically efficient. However, the suppression of helical flow before blood enters the device might raise concerns about its clinical application.


Subject(s)
Aortic Aneurysm, Abdominal/surgery , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Endovascular Procedures/instrumentation , Hemodynamics/physiology , Stents , Aged , Aortic Aneurysm, Abdominal/physiopathology , Endovascular Procedures/methods , Female , Humans , Hydrodynamics , Male , Pressure , Prosthesis Design , Stress, Mechanical , Tomography, X-Ray Computed , Treatment Outcome
10.
Appl Ergon ; 62: 237-246, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28411734

ABSTRACT

Teleoperation of an agricultural robotic system requires effective and efficient human-robot interaction. This paper investigates the usability of different interaction modes for agricultural robot teleoperation. Specifically, we examined the overall influence of two types of output devices (PC screen, head mounted display), two types of peripheral vision support mechanisms (single view, multiple views), and two types of control input devices (PC keyboard, PS3 gamepad) on observed and perceived usability of a teleoperated agricultural sprayer. A modular user interface for teleoperating an agricultural robot sprayer was constructed and field-tested. Evaluation included eight interaction modes: the different combinations of the 3 factors. Thirty representative participants used each interaction mode to navigate the robot along a vineyard and spray grape clusters based on a 2 × 2 × 2 repeated measures experimental design. Objective metrics of the effectiveness and efficiency of the human-robot collaboration were collected. Participants also completed questionnaires related to their user experience with the system in each interaction mode. Results show that the most important factor for human-robot interface usability is the number and placement of views. The type of robot control input device was also a significant factor in certain dependents, whereas the effect of the screen output type was only significant on the participants' perceived workload index. Specific recommendations for mobile field robot teleoperation to improve HRI awareness for the agricultural spraying task are presented.


Subject(s)
Agriculture/instrumentation , Man-Machine Systems , Robotics , User-Computer Interface , Adult , Aged , Computer Terminals , Consumer Behavior , Data Display , Female , Humans , Male , Middle Aged , Surveys and Questionnaires , Task Performance and Analysis , Workload
11.
Comput Methods Biomech Biomed Engin ; 20(3): 242-249, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27545329

ABSTRACT

Endovascular aneurysm repair (EVAR) of abdominal aortic aneurysms results in redirection of blood through the deployed endograft (EG). Even though EVAR is clinically effective, the absolute flow restoration is not warranted. Our purpose was to compare the physiological with the post-EVAR infrarenal flow conditions. We developed patient-specific models based on computed tomography data of five healthy volunteers and ten patients treated with the Endurant® stent-graft system. Wall shear stress (WSS), helicity, pressure and velocity fields were calculated using computational fluid dynamics. The results showed a decrease of peak WSS on the part of the EG that resides in the iliac arteries, compared to the physiological value (p = 0.01). At the abdominal part, the average helicity seems to increase after EVAR, while at the iliac arteries part, the intensity of helical flow seems physiological. Pressure drop and peak velocity in the iliac arteries part are lower than the physiological values (p = 0.04). The comparison revealed that most hemodynamic properties converge to normal levels at the abdominal part whereas statistically significant variations were observed in the iliac arteries part. The delineation of the differences between physiological and postoperative flow data could pave the way for the improvement of EG designs.


Subject(s)
Aortic Aneurysm, Abdominal/surgery , Blood Flow Velocity , Blood Vessel Prosthesis Implantation/methods , Blood Vessel Prosthesis , Endovascular Procedures/methods , Aged , Aged, 80 and over , Biomechanical Phenomena , Diastole , Elasticity , Healthy Volunteers , Hemodynamics , Humans , Hydrodynamics , Iliac Artery/pathology , Kidney/blood supply , Male , Middle Aged , Pressure , Prosthesis Design , Risk Assessment , Shear Strength , Stents , Tomography, X-Ray Computed , Treatment Outcome
12.
Article in English | MEDLINE | ID: mdl-25586707

ABSTRACT

A mathematical approach of blood flow within an abdominal aortic aneurysm (AAA) with intraluminal thrombus (ILT) is presented. The macroscale formation of ILT is modeled as a growing porous medium with variable porosity and permeability according to values proposed in the literature. The model outlines the effect of a porous ILT on blood flow in AAAs. The numerical solution is obtained by employing a structured computational mesh of an idealized fusiform AAA geometry and applying the Galerkin weighted residual method in generalized curvilinear coordinates. Results on velocity and pressure fields of independent cases with and without ILT are presented and discussed. The vortices that develop within the aneurysmal cavity are studied and visualized as ILT becomes more condensed. From a mechanistic point of view, the reduction of bulge pressure, as ILT is thickening, supports the observation that ILT could protect the AAA from a possible rupture. The model also predicts a relocation of the maximum pressure region toward the zone proximal to the neck of the aneurysm. However, other mechanisms, such as the gradual wall weakening that usually accompany AAA and ILT formation, which are not included in this study, may offset this effect.


Subject(s)
Aortic Aneurysm, Abdominal/complications , Aortic Aneurysm, Abdominal/physiopathology , Regional Blood Flow , Thrombosis/complications , Thrombosis/physiopathology , Humans , Models, Biological , Permeability , Porosity , Pressure
13.
J Endovasc Ther ; 22(3): 413-20, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25991770

ABSTRACT

Since the advent of endovascular repair of aortic aneurysms (EVAR), clinical focus has been on preventing loss of sealing at the level of the infrarenal neck, which leads to type I endoleak and repressurization of the aneurysm sac. Enhanced mechanisms for central fixation and seal have consequently lowered the incidence of migration and endoleaks. However, endograft limb thrombosis and its causal mechanisms have not been addressed adequately in the literature. This article reviews the pathophysiological mechanisms associated with limb thrombosis in order to facilitate better clinical judgment to prevent iliac adverse effects.


Subject(s)
Aortic Aneurysm, Abdominal/surgery , Blood Vessel Prosthesis Implantation/instrumentation , Blood Vessel Prosthesis , Endovascular Procedures/instrumentation , Iliac Artery/surgery , Stents , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Aneurysm, Abdominal/physiopathology , Aortography/methods , Biomechanical Phenomena , Blood Vessel Prosthesis Implantation/adverse effects , Endoleak/etiology , Endoleak/physiopathology , Endovascular Procedures/adverse effects , Graft Occlusion, Vascular/etiology , Graft Occlusion, Vascular/physiopathology , Hemodynamics , Humans , Iliac Artery/diagnostic imaging , Iliac Artery/physiopathology , Prosthesis Design , Thrombosis/etiology , Thrombosis/physiopathology , Tomography, X-Ray Computed , Treatment Outcome
14.
Ann Biomed Eng ; 43(1): 139-53, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25527320

ABSTRACT

Rupture of abdominal aortic aneurysm (AAA) is associated with high mortality rates. Risk of rupture is multi-factorial involving AAA geometric configuration, vessel tortuosity, and the presence of intraluminal pathology. Fluid structure interaction (FSI) simulations were conducted in patient based computed tomography scans reconstructed geometries in order to monitor aneurysmal disease progression from normal aortas to non-ruptured and contained ruptured AAA (rAAA), and the AAA risk of rupture was assessed. Three groups of 8 subjects each were studied: 8 normal and 16 pathological (8 non-ruptured and 8 rAAA). The AAA anatomical structures segmented included the blood lumen, intraluminal thrombus (ILT), vessel wall, and embedded calcifications. The vessel wall was described with anisotropic material model that was matched to experimental measurements of AAA tissue specimens. A statistical model for estimating the local wall strength distribution was employed to generate a map of a rupture potential index (RPI), representing the ratio between the local stress and local strength distribution. The FSI simulations followed a clear trend of increasing wall stresses from normal to pathological cases. The maximal stresses were observed in the areas where the ILT was not present, indicating a potential protective effect of the ILT. Statistically significant differences were observed between the peak systolic stress and the peak stress at the mean arterial pressure between the three groups. For the ruptured aneurysms, where the geometry of intact aneurysm was reconstructed, results of the FSI simulations clearly depicted maximum wall stress at the a priori known location of rupture. The RPI mapping indicated several distinct regions of high RPI coinciding with the actual location of rupture. The FSI methodology demonstrates that the aneurysmal disease can be described by numerical simulations, as indicated by a clear trend of increasing aortic wall stresses in the studied groups, (normal aortas, AAAs and rAAAs). Ultimately, the results demonstrate that FSI wall stress mapping and RPI can be used as a tool for predicting the potential rupture of an AAA by predicting the actual rupture location, complementing current clinical practice by offering a predictive diagnostic tool for deciding whether to intervene surgically or spare the patient from an unnecessary risky operation.


Subject(s)
Aortic Aneurysm, Abdominal/physiopathology , Aortic Rupture/physiopathology , Aorta/physiology , Aortic Aneurysm, Abdominal/diagnostic imaging , Aortic Rupture/diagnostic imaging , Aortography , Biomechanical Phenomena , Disease Progression , Female , Humans , Male , Models, Cardiovascular , Regional Blood Flow , Risk , Tomography, X-Ray Computed
15.
Article in English | MEDLINE | ID: mdl-23947695

ABSTRACT

A right-sided aorta is a rare malformation which may be associated with other various types of congenital heart disease. We utilised haemodynamic, echocardiographic measurements, computerised tomography and image reconstruction software packages that were integrated in a computational fluid dynamics model to determine blood flow patterns in patient-based aortas. In the left-sided aorta, a systolic clockwise rotational component was present, while helical flow was depicted in the aortic arch that was converted in the descending aorta as counter-rotating vortices with accompanying retrograde flow. The right-sided configuration has not altered the orientation of the three-dimensional vortex, but intensification of polymorphic flow patterns, alterations in wall shear stress distribution and development of a lateral pressure gradient at the area of an aneurysmal anomaly was observed. Moreover, increments of Reynolds, Womersley and Dean numbers were evident. These phenomena along with the formation of the aneurysm might influence cardiovascular risk in patients with right-sided aortas.


Subject(s)
Aorta/physiopathology , Hemorheology/physiology , Models, Cardiovascular , Numerical Analysis, Computer-Assisted , Patient-Specific Modeling , Adult , Aorta/diagnostic imaging , Diastole , Female , Humans , Hydrodynamics , Imaging, Three-Dimensional , Male , Stress, Mechanical , Systole , Tomography, X-Ray Computed , Ultrasonography
17.
J Biomech Eng ; 136(2): 021014, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24337144

ABSTRACT

Approximately 7.5 × 106 patients in the US currently suffer from end-stage heart failure. The FDA has recently approved the designations of the Thoratec HeartMate II ventricular assist device (VAD) for both bridge-to-transplant and destination therapy (DT) due to its mechanical durability and improved hemodynamics. However, incidence of pump thrombosis and thromboembolic events remains high, and the life-long complex pharmacological regimens are mandatory in its VAD recipients. We have previously successfully applied our device thrombogenicity emulation (DTE) methodology for optimizing device thromboresistance to the Micromed Debakey VAD, and demonstrated that optimizing device features implicated in exposing blood to elevated shear stresses and exposure times significantly reduces shear-induced platelet activation and significantly improves the device thromboresistance. In the present study, we compared the thrombogenicity of the FDA-approved HeartMate II VAD with the DTE-optimized Debakey VAD (now labeled HeartAssist 5). With quantitative probability density functions of the stress accumulation along large number of platelet trajectories within each device which were extracted from numerical flow simulations in each device, and through measurements of platelet activation rates in recirculation flow loops, we specifically show that: (a) Platelets flowing through the HeartAssist 5 are exposed to significantly lower stress accumulation that lead to platelet activation than the HeartMate II, especially at the impeller-shroud gap regions (b) Thrombus formation patterns observed in the HeartMate II are absent in the HeartAssist 5 (c) Platelet activation rates (PAR) measured in vitro with the VADs mounted in recirculation flow-loops show a 2.5-fold significantly higher PAR value for the HeartMate II. This head to head thrombogenic performance comparative study of the two VADs, one optimized with the DTE methodology and one FDA-approved, demonstrates the efficacy of the DTE methodology for drastically reducing the device thrombogenic potential, validating the need for a robust in silico/in vitro optimization methodology for improving cardiovascular devices thromboresistance.


Subject(s)
Heart Ventricles/physiopathology , Heart-Assist Devices/adverse effects , Models, Cardiovascular , Thrombosis/etiology , Thrombosis/physiopathology , Blood Flow Velocity , Blood Pressure , Computer Simulation , Equipment Failure Analysis , Heart Ventricles/surgery , Humans , Prosthesis Design , Thrombosis/prevention & control
18.
ASAIO J ; 59(3): 275-83, 2013.
Article in English | MEDLINE | ID: mdl-23644615

ABSTRACT

Aortic stenosis is the most prevalent and life-threatening form of valvular heart disease. It is primarily treated via open-heart surgical valve replacement with either a tissue or a mechanical prosthetic heart valve (PHV), each prone to degradation and thrombosis, respectively. Polymeric PHVs may be optimized to eliminate these complications, and they may be more suitable for the new transcatheter aortic valve replacement procedure and in devices like the total artificial heart. However, the development of polymer PHVs has been hampered by persistent in vivo calcification, degradation, and thrombosis. To address these issues, we have developed a novel surgically implantable polymer PHV composed of a new thermoset polyolefin called cross-linked poly(styrene-block-isobutylene-block-styrene), or xSIBS, in which key parameters were optimized for superior functionality via our device thrombogenicity emulation methodology. In this parametric study, we compared our homogeneous optimized polcymer PHV to a prior composite polymer PHV and to a benchmark tissue valve. Our results show significantly improved hemodynamics and reduced thrombogenicity in the optimized polymer PHV compared to the other valves. These results indicate that our new design may not require anticoagulants and may be more durable than its predecessor, and validate the improvement, toward optimization, of this novel polymeric PHV design.


Subject(s)
Aortic Valve Stenosis/surgery , Heart Valve Prosthesis Implantation/instrumentation , Heart Valve Prosthesis/adverse effects , Platelet Activation/drug effects , Polymers/therapeutic use , Thrombin/therapeutic use , Aortic Valve/surgery , Computer Simulation , Heart Valve Prosthesis Implantation/methods , Hemodynamics , Humans , Prosthesis Design , Reproducibility of Results
19.
Ann Biomed Eng ; 41(6): 1279-96, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23400312

ABSTRACT

The advent of implantable blood-recirculating devices such as left ventricular assist devices and prosthetic heart valves provides a viable therapy for patients with end-stage heart failure and valvular disease. However, device-generated pathological flow patterns result in thromboembolic complications that require complex and lifelong anticoagulant therapy, which entails hemorrhagic risks and is not appropriate for certain patients. Optimizing the thrombogenic performance of such devices utilizing numerical simulations requires the development of predictive platelet activation models that account for variations in shear-loading rates characterizing blood flow through such devices. Platelets were exposed in vitro to both dynamic and constant shear stress conditions emulating those found in blood-recirculating devices in order to determine their shear-induced activation and sensitization response. Both these behaviors were found to be dependent on the shear loading rates, in addition to shear stress magnitude and exposure time. We then critically examined several current models and evaluated their predictive capabilities using these results. Shear loading rate terms were then included to account for dynamic aspects that are either ignored or partially considered by these models, and model parameters were optimized. Independent optimization for each of the two types of shear stress exposure conditions tested resulted in different sets of best-fit constants, indicating that universal optimization may not be possible. Inherent limitations of the current models require a paradigm shift from these integral-based discretized power law models to better address the dynamic conditions encountered in blood-recirculating devices.


Subject(s)
Heart-Assist Devices , Models, Cardiovascular , Platelet Activation , Adult , Female , Humans , Male , Stress, Mechanical
20.
Coron Artery Dis ; 24(2): 75-87, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23363983

ABSTRACT

OBJECTIVES: The aim of this study was to elucidate the mechanisms and underlying biomechanical factors that may play a role in the risk of rupture of vulnerable plaques (VPs) by studying patient-based geometries of coronary arteries reconstructed from intravascular ultrasound (IVUS) imaging utilizing fluid-structure interaction (FSI) numerical simulations. BACKGROUND: According to recent estimates, coronary artery disease is responsible for one in six deaths in the USA, and causes about one million heart attacks each year. Among these, the rupture of coronary VPs followed by luminal blockage is widely recognized as a major cause of sudden heart attacks; most importantly, the patients may appear as asymptomatic under routine screening before the occurrence of the index event. MATERIALS AND METHODS: FSI simulations of patient-based geometries of coronary arteries reconstructed from IVUS imaging were performed to establish the dependence of the risk of rupture of coronary VP on biomechanical factors, such as the fibrous cap thickness, presence of microcalcification in the fibrous cap, arterial anisotropy, and hypertension. RESULTS: Parametric FSI simulations indicated that mechanical stresses (von Mises stresses) increase exponentially with the thinning of the fibrous cap as well as with increasing levels of hypertension. The inclusion of a microcalcification in the fibrous cap considerably increases the risk of rupture of VP , with an ∼two-fold stress increase in the VP stress burden. Furthermore, the stress-driven reorientation and biochemical degradation of the collagen fibers in the vessel wall because of atherosclerosis (studied with an anisotropic fibrous cap 65° fiber reorientation angle) results in a 30% increase in the stress levels as compared with simulations with isotropic material models, clearly indicating that the latter, which are commonly used in such studies, underestimate the risk of rupture of VP. CONCLUSION: The results indicate that IVUS-based patient-specific FSI simulations for mapping the wall stresses, followed by analysis of the biomechanical risk factors, may be used as an additional diagnostic tool for clinicians to estimate the plaque burden and determine the proper treatment and intervention.


Subject(s)
Coronary Artery Disease/physiopathology , Coronary Vessels/physiopathology , Models, Cardiovascular , Plaque, Atherosclerotic/physiopathology , Vascular Calcification/physiopathology , Anisotropy , Biomechanical Phenomena , Coronary Artery Disease/diagnostic imaging , Coronary Vessels/diagnostic imaging , Humans , Hypertension/physiopathology , Imaging, Three-Dimensional , Plaque, Atherosclerotic/diagnostic imaging , Risk Factors , Rupture/physiopathology , Spectrum Analysis , Stress, Mechanical , Ultrasonography, Interventional , Vascular Calcification/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...