Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chempluschem ; : e202400194, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38646973

ABSTRACT

Nanoparticle formation by Spark Discharge Aerosol Generation offers low-cost fabrication of nanoparticles, without the use of chemicals or vacuum. It produces aerosol particles of a few nanometers in size with high purity. In this work, copper-based -CuO (tenorite) and Cu- nanoparticles are produced, characterized and used to modify face mask air filters, achieving the introduction of antibacterial and antiviral properties. A range of characterization techniques have been employed, down to the atomic level. The majority of the particles are CuO (of a few nanometers in size that agglomerate to form aggregates), the remainder being a small number of larger Cu particles. The particles were deposited on various substrates, mainly fiber filters in order to study them and use them as biocidal agents. On face masks, their antibacterial activity against Escherichia coli (E.coli) results in a 100 % decrease in bacteria cell viability. Their antiviral activity on face masks results in a 90 % reduction of the Severe Acute Respiratory Syndrome Corona Virus 2 (SARS-CoV-2) viability, 15 minutes post the application of the virus stock solution. This highlights the effectiveness of this approach, its simplicity, its low cost and its excellent environmental credentials.

2.
Antibiotics (Basel) ; 12(8)2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37627695

ABSTRACT

In this work, the antibacterial properties of nanostructured zinc oxide (ZnO) surfaces are explored by incorporating them as walls in a simple-to-fabricate microchannel device. Bacterial cell lysis is demonstrated and quantified in such a device, which functions due to the action of its nanostructured ZnO surfaces in contact with the working fluid. To shed light on the mechanism responsible for lysis, E. coli bacteria were incubated in zinc and nanostructured ZnO substrates, as well as the here-investigated ZnO-based microfluidic devices. The unprecedented killing efficiency of E. coli in nanostructured ZnO microchannels, effective after a 15 min incubation, paves the way for the implementation of such microfluidic chips in the disinfection of bacteria-containing solutions. In addition, the DNA release was confirmed by off-chip PCR and UV absorption measurements. The results indicate that the present nanostructured ZnO-based microfluidic chip can, under light, achieve partial inactivation of the released bacterial DNA via reactive oxygen species-mediated oxidative damage. The present device concept can find broader applications in cases where the presence of DNA in a sample is not desirable. Furthermore, the present microchannel device enables, in the dark, efficient release of bacterial DNA for downstream genomic DNA analysis. The demonstrated potential of this antibacterial device for tailored dual functionality in light/dark conditions is the main novel contribution of the present work.

SELECTION OF CITATIONS
SEARCH DETAIL
...