Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Technol Cancer Res Treat ; 20: 15330338211038490, 2021.
Article in English | MEDLINE | ID: mdl-34490809

ABSTRACT

Purpose: In this study, we investigate linac volumetric-modulated arc therapy (VMAT) planning strategies for bilateral hip prostheses prostate patients with respect to plan quality and deliverability, while limiting entrance dose to the prostheses. Methods: Three VMAT plans were retrospectively created for 20 patients: (1) partial arcs (PA), (2) 2 full arcs optimized with 500 cGy max prostheses dose (MD), and (3) 2 full arcs optimized with max dose-volume histogram (DVH) constraint of 500 cGy to 10% prostheses volume (MDVH). PA techniques contained 6 PA with beam angles that avoid entering each prosthesis. For each patient, other than prostheses constraints, the same Pinnacle VMAT optimization objectives were used. Plans were normalized with PTV D95% = 79.2 Gy prescription dose. Organ-at-risk DVH metrics, monitor units (MUs), conformality, gradient, and homogeneity indices were evaluated for each plan. Mean entrance prosthesis dose was determined in Pinnacle by converting each arc into static beams and utilizing only control points traversing each prosthesis. Plan deliverability was evaluated with SunNuclear ArcCheck measurements (gamma criteria 3%/2 mm) on an Elekta machine. Results: MD and MDVH had similar dosimetric quality, both improved DVH metrics for rectum and bladder compared to PA. Plan complexities among all plans were similar (average MUs: 441-518). Conformality, homogeneity, and gradient indices were significantly improved in MD and MDVH versus PA (P < .001). Gamma pass rates for MD (99.0 ± 1.2%) and MDVH (99.2 ± 0.99%) were comparable. A significant difference over PA was observed (96.8 ± 1.6%, P < .001). Field-by-field analysis demonstrated 12/20 PA plans resulted in fields with pass rates <95% versus 1/20 plans for MD and none for MDVH. Cumulative mean entrance doses to each prosthesis were 62.9 ± 17.7 cGy for MD plans and 83.4 ± 27.5 cGy for MDVH plans. Conclusion: MD and MDVH plans had improved dosimetric quality and deliverability over PA plans with minimal entrance doses (∼1% of prescription) to each prosthesis and are an improved alternative for bilateral prostheses prostate patients.


Subject(s)
Hip Prosthesis , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Clinical Decision-Making , Diagnostic Imaging , Disease Management , Humans , Male , Organs at Risk , Prostatic Neoplasms/complications , Prostatic Neoplasms/diagnosis , Radiometry , Radiotherapy Dosage , Radiotherapy, Image-Guided
2.
Radiat Oncol ; 16(1): 117, 2021 Jun 26.
Article in English | MEDLINE | ID: mdl-34174932

ABSTRACT

BACKGROUND: The purpose of this study is to comprehensively evaluate the suitability of Gafchromic EBT3 and EBT-XD film for dosimetric quality assurance in 0.35 T MR-guided radiotherapy. METHODS: A 0.35 T magnetic field strength was utilized to evaluate magnetic field effects on EBT3 and EBT-XD Gafchromic films by studying the effect of film exposure time within the magnetic field using two timing sequences and film not exposed to MR, the effect of magnetic field exposure on the crystalline structure of the film, and the effect of orientation of the film with respect to the bore within the magnetic field. The orientation of the monomer crystal was qualitatively evaluated using scanning electron microscopy (SEM) compared to unirradiated film. Additionally, dosimetric impact was evaluated through measurements of a series of open field irradiations (0.83 × 0.83-cm2 to 19.92 × 19.92-cm2) and patient specific quality assurance measurements. Open fields were compared to planned dose and an independent dosimeter. Film dosimetry was applied to twenty conventional and twenty stereotactic body radiotherapy (SBRT) patient specific quality assurance cases. RESULTS: No visual changes in crystal orientation were observed in any evaluated SEM images nor were any optical density differences observed between films irradiated inside or outside the magnetic field for both EBT3 and EBT-XD film. At small field sizes, the average difference along dose profiles measured in film compared to the same points measured using an independent dosimeter and to predicted treatment planning system values was 1.23% and 1.56%, respectively. For large field sizes, the average differences were 1.91% and 1.21%, respectively. In open field tests, the average gamma pass rates were 99.8% and 97.2%, for 3%/3 mm and 3%/1 mm, respectively. The median (interquartile range) 3%/3 mm gamma pass rates in conventional QA cases were 98.4% (96.3 to 99.2%), and 3%/1 mm in SBRT QA cases were 95.8% (95.0 to 97.3%). CONCLUSIONS: MR exposure at 0.35 T had negligible effects on EBT3 and EBT-XD Gafchromic film. Dosimetric film results were comparable to planned dose, ion chamber and diode measurements.


Subject(s)
Film Dosimetry/instrumentation , Film Dosimetry/methods , Magnetic Resonance Imaging/methods , Neoplasms/surgery , Particle Accelerators/instrumentation , Quality Assurance, Health Care/standards , Humans , Magnetic Fields , Radiation Dosage , Radiosurgery
3.
Am J Physiol Heart Circ Physiol ; 316(3): H586-H595, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30575441

ABSTRACT

Radiotherapy for the treatment of left-sided breast cancer increases the long-term risk of cardiovascular disease. The purpose of the present study was to noninvasively image the progression of radiation-induced cardiac inflammation in a large animal model using a hybrid PET and MRI system. Five canines were imaged using [18F]fluorodeoxyglucose PET to assess changes in myocardial inflammation. All animals were imaged at baseline, 1 wk, and 1, 3, 6, and 12 mo after focused cardiac external beam irradiation with image guidance. Radiation was delivered in a single fraction. The linear quadratic model was used to convert a typical multifractionated heart dose to a corrected single-fraction biologically equivalent dose. Immunohistochemistry was performed on excised left ventricular tissue samples from all five irradiated canines and one nonirradiated control canine to confirm the presence of inflammation. The mean doses delivered to the entire heart, left ventricle, left anterior descending artery, and left circumflex artery were 1.7 ± 0.2, 2.7 ± 0.2, 5.5 ± 0.9, and 1.1 ± 0.4 Gy, respectively. FDG standard uptake values remained persistently elevated compared with baseline (1.1 ± 0.03 vs. 2.6 ± 0.19, P < 0.05). The presence of myocardial inflammation was confirmed histologically and correlated with myocardial dose. This study suggests a global inflammatory response that is persistent up to 12 mo postirradiation. Inflammation PET imaging should be considered in future clinical studies to monitor the early changes in cardiac function that may play a role in the ultimate development of radiation-induced cardiac toxicity. NEW & NOTEWORTHY Using advanced cardiac PET imaging, we have shown the spatial and quantitative relationship between radiation dose deposition and temporal changes in inflammation. We have shown that the progression of radiation-induced cardiac inflammation is immediate and does not subside for up to 1 yr after radiation. Results are presented in a large animal model that closely resembles the size and vessel architecture of humans. The proposed imaging protocol can be easily replicated for clinical use.


Subject(s)
Breast Neoplasms/radiotherapy , Cardiovascular Diseases/diagnostic imaging , Positron-Emission Tomography , Radiation Injuries/diagnostic imaging , Radiotherapy/adverse effects , Animals , Cardiovascular Diseases/etiology , Cardiovascular Diseases/pathology , Dogs , Female , Fluorodeoxyglucose F18 , Magnetic Resonance Imaging , Multimodal Imaging , Radiation Dosage , Radiation Injuries/etiology , Radiation Injuries/pathology , Radiopharmaceuticals
4.
J Appl Clin Med Phys ; 19(4): 222-229, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29905000

ABSTRACT

The QFix EncompassTM stereotactic radiosurgery (SRS) immobilization system consists of a thermoplastic mask that attaches to the couch insert to immobilize patients treated with intracranial SRS. This study evaluates the dosimetric impact and verifies a vendor provided treatment planning system (TPS) model in the Eclipse TPS. A thermoplastic mask was constructed for a Lucy 3D phantom, and was scanned with and without the EncompassTM system. Attenuation measurements were performed in the Lucy phantom with and without the insert using a pinpoint ion chamber for energies of 6xFFF, 10xFFF and 6X, with three field sizes (2 × 2, 4 × 4, and 6 × 6 cm2 ). The measurements were compared to two sets of calculations. The first set utilized the vendor provided Encompass TPS model (EncompassTPS ), which consists of two structures: the Encompass and Encompass base structure. Three HU values for the Encompass (200, 300, 400) and Encompass Base (-600, -500, -400) structures were evaluated. The second set of calculations consists of the Encompass insert included in the external body contour (EncompassEXT ) for dose calculation. The average measured percent attenuation in the posterior region of the insert ranged from 3.4%-3.8% for the 6xFFF beam, 2.9%-3.4% for the 10xFFF, and 3.3%-3.6% for the 6X beam. The maximum attenuation occurred at the region where the mask attaches to the insert, where attenuation up to 17% was measured for a 6xFFF beam. The difference between measured and calculated attenuation with either the EncompassEXT or EncompassTPS approach was within 0.5%. HU values in the EncompassTPS model that provided the best agreement with measurement was 400 for the Encompass structure and -400 for the Encompass base structure. Significant attenuation was observed at the area where the mask attaches to the insert. Larger differences can be observed when using few static beams compared to rotational treatment techniques.


Subject(s)
Radiosurgery , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated
5.
Radiother Oncol ; 127(3): 460-466, 2018 06.
Article in English | MEDLINE | ID: mdl-29807837

ABSTRACT

INTRODUCTION: The purpose of this study was to investigate the systematic localization accuracy, treatment planning capability, and delivery accuracy of an integrated magnetic resonance imaging guided Linear Accelerator (MR-Linac) platform for stereotactic radiosurgery. MATERIALS AND METHODS: The phantom for the end-to-end test comprises three different compartments: a rectangular MR/CT target phantom, a Winston-Lutz cube, and a rectangular MR/CT isocenter phantom. Hidden target tests were performed at gantry angles of 0, 90, 180, and 270 degrees to quantify the systematic accuracy. Five patient plans with a total of eleven lesions were used to evaluate the dosimetric accuracy. Single-isocenter IMRT treatment plans using 10-15 coplanar beams were generated to treat the multiple metastases. RESULTS: The end-to-end localization accuracy of the system was 1.0 ±â€¯0.1 mm. The conformity index, homogeneity index and gradient index of the plans were 1.26 ±â€¯0.22, 1.22 ±â€¯0.10, and 5.38 ±â€¯1.44, respectively. The average absolute point dose difference between measured and calculated dose was 1.64 ±â€¯1.90%, and the mean percentage of points passing the 3%/1 mm gamma criteria was 96.87%. CONCLUSIONS: Our experience demonstrates that excellent plan quality and delivery accuracy was achievable on the MR-Linac for treating multiple brain metastases with a single isocenter.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Magnetic Resonance Imaging/instrumentation , Particle Accelerators , Radiosurgery/instrumentation , Radiotherapy Planning, Computer-Assisted/instrumentation , Brain Neoplasms/secondary , Humans , Magnetic Resonance Imaging/methods , Phantoms, Imaging , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/instrumentation , Radiotherapy, Intensity-Modulated/methods , Retrospective Studies
6.
J Appl Clin Med Phys ; 17(5): 329-340, 2016 09 08.
Article in English | MEDLINE | ID: mdl-27685129

ABSTRACT

Volumetric-modulated arc therapy (VMAT) is emerging as a leading technology in treating early-stage, non-small cell lung cancer (NSCLC) with stereotactic ablative radiotherapy (SABR). However, two other modalities capable of deliver-ing intensity-modulated radiation therapy (IMRT) include fixed-beam and helical TomoTherapy (HT). This study aims to provide an extensive dosimetric compari-son among these various IMRT techniques for treating early-stage NSCLC with SABR. Ten early-stage NSCLC patients were retrospectively optimized using three fixed-beam techniques via nine to eleven beams (high and low modulation step-and-shoot (SS), and sliding window (SW)), two VMAT techniques via two partial arcs (SmartArc (SA) and RapidArc (RA)), and three HT techniques via three different fan beam widths (1 cm, 2.5 cm, and 5 cm) for 80 plans total. Fixed-beam and VMAT plans were generated using flattening filter-free beams. SS and SA, HT treatment plans, and SW and RA were optimized using Pinnacle v9.1, Tomoplan v.3.1.1, and Eclipse (Acuros XB v11.3 algorithm), respectively. Dose-volume histogram statistics, dose conformality, and treatment delivery efficiency were analyzed. VMAT treatment plans achieved significantly lower values for contralat-eral lung V5Gy (p ≤ 0.05) compared to the HT plans, and significantly lower mean lung dose (p < 0.006) compared to HT 5 cm treatment plans. In the comparison between the VMAT techniques, a significant reduction in the total monitor units (p = 0.05) was found in the SA plans, while a significant decrease was observed in the dose falloff parameter, D2cm, (p = 0.05), for the RA treatments. The maximum cord dose was significantly reduced (p = 0.017) in grouped RA&SA plans com-pared to SS. Estimated treatment time was significantly higher for HT and fixed-beam plans compared to RA&SA (p < 0.001). Although, a significant difference was not observed in the RA vs. SA (p = 0.393). RA&SA outperformed HT in all parameters measured. Despite an increase in dose to the heart and bronchus, this study demonstrates that VMAT is dosimetrically advantageous in treating early-stage NSCLC with SABR compared to fixed-beam, while providing significantly shorter treatment times.


Subject(s)
Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/surgery , Organs at Risk/radiation effects , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Algorithms , Carcinoma, Non-Small-Cell Lung/pathology , Humans , Lung Neoplasms/pathology , Neoplasm Staging , Patient Selection , Radiotherapy Dosage , Retrospective Studies
7.
Int J Radiat Oncol Biol Phys ; 95(3): 1075-1082, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27130788

ABSTRACT

PURPOSE: To use 4-dimensional computed tomography (4D-CT) imaging to predict the level of uncertainty in cardiac dose estimates of the left anterior descending artery that arises due to breathing motion during radiation therapy for left-sided breast cancer. METHODS AND MATERIALS: The fast helical CT (FH-CT) and 4D-CT of 30 left-sided breast cancer patients were retrospectively analyzed. Treatment plans were created on the FH-CT. The original treatment plan was then superimposed onto all 10 phases of the 4D-CT to quantify the dosimetric impact of respiratory motion through 4D dose accumulation (4D-dose). Dose-volume histograms for the heart, left ventricle (LV), and left anterior descending (LAD) artery obtained from the FH-CT were compared with those obtained from the 4D-dose. RESULTS: The 95% confidence interval of 4D-dose and FH-CT differences in mean dose estimates for the heart, LV, and LAD were ±0.5 Gy, ±1.0 Gy, and ±8.7 Gy, respectively. CONCLUSION: Fast helical CT is a good approximation for doses to the heart and LV; however, dose estimates for the LAD are susceptible to uncertainties that arise due to intrafraction breathing motion that cannot be ascertained without the additional information obtained from 4D-CT and dose accumulation. For future clinical studies, we suggest the use of 4D-CT-derived dose-volume histograms for estimating the dose to the LAD.


Subject(s)
Coronary Vessels/radiation effects , Dose Fractionation, Radiation , Four-Dimensional Computed Tomography/methods , Organs at Risk/radiation effects , Respiratory Mechanics , Unilateral Breast Neoplasms/radiotherapy , Adult , Female , Humans , Male , Motion , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome , Unilateral Breast Neoplasms/diagnostic imaging
8.
Pract Radiat Oncol ; 5(3): 156-161, 2015.
Article in English | MEDLINE | ID: mdl-25413395

ABSTRACT

PURPOSE: To evaluate the dosimetric potential of respiratory-gated volumetric modulated arc therapy (VMAT) to reduce the dose to normal lung when treating early-stage non-small cell lung cancer (NSCLC) with stereotactic body radiation therapy (SBRT). METHODS AND MATERIALS: Twenty patients with inoperable stage I/II NSCLC with motion greater than 5 mm were retrospectively planned with 4-dimensional computed tomography-based gated and nongated VMAT. Each plan was optimized using two 225° arcs with 10-MV flattening filter-free beams with maximum dose rate of 2400 MU/min. A host script was generated and used to optimize all 40 plans to minimize dosimetric bias. The main dosimetric parameters compared were percent volume of the lung receiving 20 Gy or more (V(20Gy)) and the absolute volume of lung minus the internal tumor volume receiving at least 50% of the prescription dose for normal lung (V(50%)). Other parameters considered were the maximum dose 2 cm from the planning target volume (D(2cm)), percent volume of the contralateral lung receiving 5 Gy or more (V(5Gy)), mean lung dose, maximum dose to normal structures, and monitor units. RESULTS: There was a significant decrease in both parameters for the normal lung with gated VMAT. V(20Gy), predictive for pneumonitis, decreased from (6.05 ± 2.06%) to (5.25 ± 1.75%) (P = .00009) and the absolute volume of lung minus the internal tumor volume receiving at least 50% of the prescription dose decreased from (158.17 ± 61.12 cm(3)) to (125.71 ± 49.46 cm(3)) (P = .00002). Also, there was a significant decrease in D(2cm), contralateral V(5Gy), mean lung dose, and monitor units. CONCLUSIONS: Respiratory-gated VMAT has the potential to reduce the dose to normal lung when treating early-stage NSCLC with SBRT for tumor motion greater than 5 mm.


Subject(s)
Carcinoma, Non-Small-Cell Lung/radiotherapy , Carcinoma, Non-Small-Cell Lung/surgery , Lung Neoplasms/radiotherapy , Lung Neoplasms/surgery , Radiotherapy Planning, Computer-Assisted/methods , Four-Dimensional Computed Tomography , Humans , Radiosurgery/methods , Retrospective Studies
9.
J Appl Clin Med Phys ; 14(1): 4052, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23318393

ABSTRACT

Intensity-modulated radiation therapy (IMRT) has become a standard technique in radiation therapy for treating different types of cancers. Various class solutions have been developed for simple cases (e.g., localized prostate, whole breast) to generate IMRT plans efficiently. However, for more complex cases (e.g., head and neck, pelvic nodes), it can be time-consuming for a planner to generate optimized IMRT plans. To generate optimal plans in these more complex cases which generally have multiple target volumes and organs at risk, it is often required to have additional IMRT optimization structures such as dose limiting ring structures, adjust beam geometry, select inverse planning objectives and associated weights, and additional IMRT objectives to reduce cold and hot spots in the dose distribution. These parameters are generally manually adjusted with a repeated trial and error approach during the optimization process. To improve IMRT planning efficiency in these more complex cases, an iterative method that incorporates some of these adjustment processes automatically in a planning script is designed, implemented, and validated. In particular, regional optimization has been implemented in an iterative way to reduce various hot or cold spots during the optimization process that begins with defining and automatic segmentation of hot and cold spots, introducing new objectives and their relative weights into inverse planning, and turn this into an iterative process with termination criteria. The method has been applied to three clinical sites: prostate with pelvic nodes, head and neck, and anal canal cancers, and has shown to reduce IMRT planning time significantly for clinical applications with improved plan quality. The IMRT planning scripts have been used for more than 500 clinical cases.


Subject(s)
Algorithms , Neoplasms/radiotherapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Conformal/methods , Humans , Radiotherapy Dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...