Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Environ Manage ; 346: 118989, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37717393

ABSTRACT

Natural soil components, such as clays, have recently piqued interest because of their potential as pesticide adsorbents. This research work sheds light on the possibility of the application of natural Albanian clays as adsorbents for methomyl and dimethoate pesticides from aqueous solutions. Natural Albanian clays from the regions of Brari, Currila, Dardha, and Prrenjasi were employed in the study and were characterized by granulometric analysis and powder X-ray diffraction. Each clay's adsorption capacity and desorption behavior were investigated toward the chosen pesticides. Within 48 h of contact time, methomyl and dimethoate solutions with different concentrations were evaluated at 25 °C to see how the insecticide concentration affected the adsorption & desorption processes for each natural clay type. The experimental data were fitted to Freundlich, Temkin and Dubinin-Radushkevich isotherm like functions and the results showed the best correlation on Freundlich like adsorption isotherm for almost all cases. Brari clay performed better adsorptive properties toward dimethoate, followed by Dardha, Currila and Prrenjasi clays. The dimethoate adsorbed quantities varied from 0.250 mg/g for C = 0.200 g/L to 0.822 mg/g for C = 0.500 g/L. In comparison to Dardha and Prrenjasi clays, Brari and Currila clays exhibit longer saturation times and improved methomyl retention. In the first 2 h of contact, 96.5% of methomyl and 81% of dimethoate were desorbed from Brari clay. The adsorption process was also investigated employing pseudo first-order and pseudo second-order kinetic models, with the results indicating that all clay-pesticide systems studied demonstrated second-order kinetic behavior. Based on the studied desorption process, it is possible to impregnate clays with various insecticides in agriculture and completely control the quantities of the insecticide released.


Subject(s)
Insecticides , Pesticides , Clay , Methomyl , Dimethoate , Adsorption , Kinetics
2.
Int J Anal Chem ; 2022: 9945199, 2022.
Article in English | MEDLINE | ID: mdl-35126523

ABSTRACT

The development of low-cost adsorbent coal FA (Kosovo A) for pesticide removal is an important area of scientific research. With this study, we show the potential of adsorption of coal FA (Kosovo A) for the removal of benalaxyl and atrazine from water. We have found that the amount of adsorbed benalaxyl and atrazine increases with an increasing amount of coal FA (Kosovo A) in solution. The maximum capacity coal FA (Kosovo A) to adsorb benalaxyl and atrazine was found to be 0.46 and 0.45 mg/g according to the Freundlich equation and 3.48 and 3.33 mg/g according to the Langmuir equation. The Freundlich adsorption equation better explains the adsorption results of pesticides (benalaxyl and atrazine) in coal FA (Kosovo A), as the values of the recovery coefficient (R 2) were higher in Freundlich equation than the Langmuir equation. The adsorption isotherms were of type L and show that the adsorption efficiency of the coal FA (Kosovo A) depends on the initial concentration of benalaxyl and atrazine in solution and the maximum removal of benalaxyl and atrazine was achieved at concentrations less than 10 µg/ml. This study's results are expected to have implications for the use of coal FA (Kosovo A) for the removal of pesticides from water.

3.
Nanomaterials (Basel) ; 10(8)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759824

ABSTRACT

Inorganic nanoparticles might have played a vital role in the transition from inorganic chemistry to self-sustaining living systems. Such transition may have been triggered or controlled by processes requiring not only versatile catalysts but also suitable reaction surfaces. Here, experimental results showing that multicolor quantum dots might have been able to participate as catalysts in several specific and nonspecific reactions, relevant to the prebiotic chemistry are demonstrated. A very fast and easy UV-induced formation of ZnCd quantum dots (QDs) with a quantum yield of up to 47% was shown to occur 5 min after UV exposure of the solution containing Zn(II) and Cd(II) in the presence of a thiol capping agent. In addition to QDs formation, xanthine activity was observed in the solution. The role of solar radiation to induce ZnCd QDs formation was replicated during a stratospheric balloon flight.

4.
Talanta ; 212: 120789, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32113552

ABSTRACT

To ensure food safety and to prevent unnecessary foodborne complications this study reports fast, fully automated process for histamine determination. This method is based on magnetic separation of histamine with magnetic particles and quantification by the fluorescence intensity change of MSA modified CdSe Quantum dots. Formation of Fe2O3 particles was followed by adsorption of TiO2 on their surface. Magnetism of developed probe enabled rapid histamine isolation prior to its fluorescence detection. Quantum dots (QDs) of approx. 3 nm were prepared via facile UV irradiation. The fluorescence intensity of CdSe QDs was enhanced upon mixing with magnetically separated histamine, in concentration-dependent manner, with a detection limit of 1.6 µM. The linear calibration curve ranged between 0.07 and 4.5 mM histamine with a low LOD and LOQ of 1.6 µM and 6 µM. The detection efficiency of the method was confirmed by ion exchange chromatography. Moreover, the specificity of the sensor was evaluated and no cross-reactivity from nontarget analytes was observed. This method was successfully applied for the direct analysis of histamine in white wine providing detection limit much lower than the histamine maximum levels established by EU regulation in food samples. The recovery rate was excellent, ranging from 84 to 100% with an RSD of less than 4.0%. The main advantage of the proposed method is full automation of the analytical procedure that reduces the time and cost of the analysis, solvent consumption and sample manipulation, enabling routine analysis of large numbers of samples for histamine and highly accurate and precise results.


Subject(s)
Food Contamination/analysis , Histamine/analysis , Metal Nanoparticles/chemistry , Spectrometry, Fluorescence/methods , Cadmium Compounds/chemistry , Ferric Compounds/chemistry , Fluorescence , Fluorescent Dyes/chemistry , Limit of Detection , Magnetic Phenomena , Quantum Dots/chemistry , Silanes/chemistry , Tellurium/chemistry , Titanium/chemistry , Wine/analysis
5.
Molecules ; 24(6)2019 Mar 18.
Article in English | MEDLINE | ID: mdl-30889907

ABSTRACT

The removal of selenium from superficial and waste water is a worldwide problem. The maximum limit according to the World Health Organization (WHO) for the selenium in the water is set at a concentration of 10 µg/L. Carbon based adsorbents have attracted much attention and recently demonstrated promising performance in removal of selenium. In this work, several materials (iron oxide based microparticles and graphene oxides materials) and their composites were prepared to remove Se(IV) from water. The graphene oxides were prepared according to the simplified Hummer's method. In addition, the effect of pH, contact time and initial Se(IV) concentration was tested. An electrochemical method such as the differential pulse cathodic stripping voltammetry was used to determine the residual selenium concentration. From the experimental data, Langmuir adsorption model was used to calculate the maximum adsorption capacity. Graphene oxide particles modified by iron oxide based microparticles was the most promising material for the removal of Se(IV) from its aqueous solution at pH 2.0. Its adsorption efficiency reached more than 90% for a solution with given Se(IV) concentration, meanwhile its maximal recorded adsorption capacity was 18.69 mg/g.


Subject(s)
Electrochemical Techniques/methods , Graphite/chemistry , Selenium/isolation & purification , Water Pollutants, Chemical/isolation & purification , Adsorption , Electrodes , Hydrogen-Ion Concentration , Microspheres , Particle Size , Solutions , Static Electricity , Temperature , Time Factors
6.
Biosens Bioelectron ; 92: 133-139, 2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28213325

ABSTRACT

Here, we aimed our attention at the synthesis of carbon dots (C-dots) with the ability to interact with DNA to suggest an approach for the detection of DNA damage. Primarily, C-dots modified with amine moieties were synthesized using the one-step microwave pyrolysis of citric acid in the presence of diethylenetriamine. The C-dots showed strong photoluminescence with a quantum yield of 4%. In addition, the C-dots (2.8±0.8nm) possessed a good colloidal stability and exhibited a positive surface charge (ζ=36mV) at a neutral pH. An interaction study of the C-dots and the DNA fragment of λ bacteriophage was performed, and the DNA binding resulted in changes to the photoluminescent and absorption properties of the C-dots. A binding of the C-dots to DNA was also observed as a change to DNA electrophoretic mobility and a decreased ability to intercalate ethidium bromide (EtBr). Moreover, the Förster (or fluorescence) resonance energy transfer (FRET) between the C-dots and EtBr was studied, in which the C-dots serve as an excitation energy donor and the EtBr serves as an acceptor. When DNA was damaged using ultraviolet (UV) radiation (λ=254nm) and hydroxyl radicals, the intensity of the emitted photoluminescence at 612nm significantly decreased. The concept was proved on analysis of the genomic DNA from PC-3 cells and DNA isolated from melanoma tissues.


Subject(s)
Carbon/chemistry , DNA Damage , Fluorescence Resonance Energy Transfer/methods , Luminescent Agents/chemistry , Quantum Dots/chemistry , Biosensing Techniques/methods , Cell Line, Tumor , DNA/analysis , DNA/genetics , DNA Damage/radiation effects , Humans , Ultraviolet Rays
7.
Int J Mol Sci ; 17(4)2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27104527

ABSTRACT

Magnetic isolation of biological targets is in major demand in the biotechnology industry today. This study considers the interaction of four surface-modified magnetic micro- and nanoparticles with selected DNA fragments. Different surface modifications of nanomaghemite precursors were investigated: MAN37 (silica-coated), MAN127 (polyvinylpyrrolidone-coated), MAN158 (phosphate-coated), and MAN164 (tripolyphosphate-coated). All particles were positive polycharged agglomerated monodispersed systems. Mean particle sizes were 0.48, 2.97, 2.93, and 3.67 µm for MAN37, MAN127, MAN164, and MAN158, respectively. DNA fragments exhibited negative zeta potential of -0.22 mV under binding conditions (high ionic strength, low pH, and dehydration). A decrease in zeta potential of particles upon exposure to DNA was observed with exception of MAN158 particles. The measured particle size of MAN164 particles increased by nearly twofold upon exposure to DNA. Quantitative PCR isolation of DNA with a high retrieval rate was observed by magnetic particles MAN127 and MAN164. Interaction between polycharged magnetic particles and DNA is mediated by various binding mechanisms such as hydrophobic and electrostatic interactions. Future development of DNA isolation technology requires an understanding of the physical and biochemical conditions of this process.


Subject(s)
DNA/isolation & purification , Magnetics/methods , Biotechnology/methods , DNA/chemistry , Microscopy, Electron, Scanning , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Real-Time Polymerase Chain Reaction
8.
Analyst ; 141(9): 2665-75, 2016 04 25.
Article in English | MEDLINE | ID: mdl-26882954

ABSTRACT

In this study, enhancement of the electrochemical signals of etoposide (ETO) measured by differential pulse voltammetry (DPV) by modifying a glassy carbon electrode (GCE) with carbon quantum dots (CQDs) is demonstrated. In comparison with a bare GCE, the modified GCE exhibited a higher sensitivity towards electrochemical detection of ETO. The lowest limit of detection was observed to be 5 nM ETO. Furthermore, scanning electron microscopy (SEM), fluorescence microscopy (FM), and electrochemical impedance spectroscopy (EIS) were employed for the further study of the working electrode surface after the modification with CQDs. Finally, the GCE modified with CQDs under optimized conditions was used to analyse real samples of ETO in the prostate cancer cell line PC3. After different incubation times (1, 3, 6, 9, 12, 18 and 24 h), these samples were then prepared prior to electrochemical detection by the GCE modified with CQDs. High performance liquid chromatography with an electrochemical detection method was employed to verify the results from the GCE modified with CQDs.


Subject(s)
Carbon/chemistry , Electrochemistry/methods , Etoposide/analysis , Glass/chemistry , Quantum Dots/chemistry , Cell Line, Tumor , Electrochemistry/instrumentation , Electrodes , Etoposide/chemistry , Etoposide/pharmacology , Humans , Limit of Detection , Povidone/chemistry
9.
Materials (Basel) ; 9(1)2016 Jan 07.
Article in English | MEDLINE | ID: mdl-28787832

ABSTRACT

Increasing urbanization and industrialization lead to the release of metals into the biosphere, which has become a serious issue for public health. In this paper, the direct electrochemical reduction of zinc ions is studied using electrochemically reduced graphene oxide (ERGO) modified glassy carbon electrode (GCE). The graphene oxide (GO) was fabricated using modified Hummers method and was electrochemically reduced on the surface of GCE by performing cyclic voltammograms from 0 to -1.5 V. The modification was optimized and properties of electrodes were determined using electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The determination of Zn(II) was performed using differential pulse voltammetry technique, platinum wire as a counter electrode, and Ag/AgCl/3 M KCl reference electrode. Compared to the bare GCE the modified GCE/ERGO shows three times better electrocatalytic activity towards zinc ions, with an increase of reduction current along with a negative shift of reduction potential. Using GCE/ERGO detection limit 5 ng·mL-1 was obtained.

10.
Int J Mol Sci ; 16(4): 7210-29, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25837469

ABSTRACT

In this work, we focused on the differences between bacterial cultures of E. coli obtained from swabs of infectious wounds of patients compared to laboratory E. coli. In addition, blocking of the protein responsible for the synthesis of glutathione (γ-glutamylcysteine synthase-GCL) using 10 mM buthionine sulfoximine was investigated. Each E. coli showed significant differences in resistance to antibiotics. According to the determined resistance, E. coli were divided into experimental groups based on a statistical evaluation of their properties as more resistant and more sensitive. These groups were also used for finding the differences in a dependence of the glutathione pathway on resistance to antibiotics. More sensitive E. coli showed the same kinetics of glutathione synthesis while blocking GCL (Km 0.1 µM), as compared to non-blocking. In addition, the most frequent mutations in genes of glutathione synthetase, glutathione peroxidase and glutathione reductase were observed in this group compared to laboratory E.coli. The group of "more resistant" E. coli exhibited differences in Km between 0.3 and 0.8 µM. The number of mutations compared to the laboratory E. coli was substantially lower compared to the other group.


Subject(s)
Drug Resistance, Bacterial/genetics , Escherichia coli/genetics , Glutathione/genetics , Signal Transduction/genetics , Buthionine Sulfoximine/pharmacology , Drug Resistance, Bacterial/drug effects , Escherichia coli/drug effects , Glutathione Peroxidase/genetics , Glutathione Reductase/genetics , Glutathione Synthase/genetics , Humans , Kinetics , Mutation/drug effects , Mutation/genetics , Signal Transduction/drug effects
11.
Nanotechnology ; 19(20): 205702, 2008 May 21.
Article in English | MEDLINE | ID: mdl-21825745

ABSTRACT

Quaternary mixed-valence compound TlIn(4)S(5)Cl micro- and nanowires are prepared by partial substitution of chalcogen with halogen starting from a stoichiometric mixture of TlCl, In and S. Their electrical conductivity and gas sensitivity properties are investigated by using standard four-terminal systems. The specific nanowire resistivity is about 10(7) Ω cm and corresponds to the value of a typical undoped semiconductor in air. This resistivity is, however, extremely sensitive to NO(2) (sensitivity about 150) or NH(3), with a rapid response of about 2 s and recovery times. This phenomenon is supposed to be particularly important for future nanodevice applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...