Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 189: 105345, 2020 Jun.
Article in English | MEDLINE | ID: mdl-31982668

ABSTRACT

BACKGROUND AND OBJECTIVE: Evaluation of biventricular function is an essential component of clinical management in pulmonary arterial hypertension (PAH). This study aims to examine the utility of biventricular strains derived from a model-to-image registration technique in PAH patients in comparison to age- and gender-matched normal controls. METHODS: A three-dimensional (3D) model was reconstructed from cine short- and long-axis cardiac magnetic resonance (CMR) images and subsequently partitioned into right ventricle (RV), left ventricle (LV) and septum. The hyperelastic warping method was used to register the meshed biventricular finite element model throughout the cardiac cycle and obtain the corresponding biventricular circumferential, longitudinal and radial strains. RESULTS: Intra- and inter-observer reproducibility of biventricular strains was excellent with all intra-class correlation coefficients > 0.84. 3D biventricular longitudinal, circumferential and radial strains for RV, LV and septum were significantly decreased in PAH patients compared with controls. Receiver operating characteristic (ROC) analysis showed that the 3D biventricular strains were better early markers (Area under the ROC curve = 0.96 for RV longitudinal strain) of ventricular dysfunction than conventional parameters such as two-dimensional strains and ejection fraction. CONCLUSIONS: Our highly reproducible methodology holds potential for extending CMR imaging to characterize 3D biventricular strains, eventually leading to deeper understanding of biventricular mechanics in PAH.


Subject(s)
Heart Ventricles/physiopathology , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional , Pulmonary Arterial Hypertension , Ventricular Dysfunction, Left/diagnostic imaging , Ventricular Dysfunction, Left/physiopathology , Adult , Female , Humans , Magnetic Resonance Imaging, Cine , Male , Middle Aged , Models, Biological
2.
Am J Physiol Heart Circ Physiol ; 317(6): H1363-H1375, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31674809

ABSTRACT

Pulmonary arterial hypertension (PAH) causes an increase in the mechanical loading imposed on the right ventricle (RV) that results in progressive changes to its mechanics and function. Here, we quantify the mechanical changes associated with PAH by assimilating clinical data consisting of reconstructed three-dimensional geometry, pressure, and volume waveforms, as well as regional strains measured in patients with PAH (n = 12) and controls (n = 6) within a computational modeling framework of the ventricles. Modeling parameters reflecting regional passive stiffness and load-independent contractility as indexed by the tissue active tension were optimized so that simulation results matched the measurements. The optimized parameters were compared with clinical metrics to find usable indicators associated with the underlying mechanical changes. Peak contractility of the RV free wall (RVFW) γRVFW,max was found to be strongly correlated and had an inverse relationship with the RV and left ventricle (LV) end-diastolic volume ratio (i.e., RVEDV/LVEDV) (RVEDV/LVEDV)+ 0.44, R2 = 0.77). Correlation with RV ejection fraction (R2 = 0.50) and end-diastolic volume index (R2 = 0.40) were comparatively weaker. Patients with with RVEDV/LVEDV > 1.5 had 25% lower γRVFW,max (P < 0.05) than that of the control. On average, RVFW passive stiffness progressively increased with the degree of remodeling as indexed by RVEDV/LVEDV. These results suggest a mechanical basis of using RVEDV/LVEDV as a clinical index for delineating disease severity and estimating RVFW contractility in patients with PAH.NEW & NOTEWORTHY This article presents patient-specific data assimilation of a patient cohort and physical description of clinical observations.


Subject(s)
Heart Ventricles/physiopathology , Hypertension, Pulmonary/physiopathology , Models, Cardiovascular , Patient-Specific Modeling , Adult , Aged , Blood Pressure , Female , Humans , Male , Middle Aged , Myocardial Contraction
3.
Acta Biomater ; 90: 241-253, 2019 05.
Article in English | MEDLINE | ID: mdl-30980939

ABSTRACT

Isolating the role(s) of microstructural pathological features in affecting diastolic filling is important in developing targeted treatments for heart diseases. We developed a microstructure-based constitutive model of the myocardium and implemented it in an efficient open-source finite element modeling framework to simulate passive inflation of the left ventricle (LV) in a representative 3D geometry based on experimentally measured muscle fiber architecture. The constitutive model was calibrated using previous tissue-level biaxial mechanical test data derived from the canine heart and validated with independent sets of measurements made at both the isolated constituent and organ level. Using the validated model, we investigated the load taken up by each tissue constituent and their effects on LV passive inflation. The model predicts that the LV compliance is sensitive to the collagen ultrastructure, specifically, the collagen fiber azimuthal angle with respect to the local muscle fiber direction and its waviness. The model also predicts that most of the load in the sub-epicardial and sub-endocardial regions is taken up, respectively, by the muscle fibers and collagen fiber network. This result suggests that normalizing LV passive stiffness by altering the collagen fiber network and myocyte stiffness is most effective when applied to the sub-endocardial and sub-epicardial regions, respectively. This finding may have implication for the development of new pharmaceutical treatments targeting individual cardiac tissue constituents to normalize LV filling function in heart diseases. STATEMENT OF SIGNIFICANCE: Current constitutive models describing the tissue mechanical behavior of the myocardium are largely phenomenological. While able to represent the bulk tissue mechanical behavior, these models cannot distinguish the contribution of the tissue constituents and their ultrastructure to heart function. Although microstructure-based constitutive models can be used to isolate the role of tissue ultrastructure, they have not been implemented in a computational framework that can accommodate realistic 3D organ geometry. The present study addresses these issues by developing and validating a microstructure-based computational modeling framework, which is used to investigate the role of tissue constituents and their ultrastructure in affecting heart function.


Subject(s)
Computer Simulation , Heart Diseases , Heart Ventricles , Models, Cardiovascular , Myocardium , Stress, Mechanical , Animals , Collagen/metabolism , Dogs , Heart Diseases/metabolism , Heart Diseases/pathology , Heart Diseases/physiopathology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Humans , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology
4.
Front Physiol ; 9: 1295, 2018.
Article in English | MEDLINE | ID: mdl-30283352

ABSTRACT

Heart failure (HF) imposes a major global health care burden on society and suffering on the individual. About 50% of HF patients have preserved ejection fraction (HFpEF). More intricate and comprehensive measurement-focused imaging of multiple strain components may aid in the diagnosis and elucidation of this disease. Here, we describe the development of a semi-automated hyperelastic warping method for rapid comprehensive assessment of biventricular circumferential, longitudinal, and radial strains that is physiological meaningful and reproducible. We recruited and performed cardiac magnetic resonance (CMR) imaging on 30 subjects [10 HFpEF, 10 HF with reduced ejection fraction patients (HFrEF) and 10 healthy controls]. In each subject, a three-dimensional heart model including left ventricle (LV), right ventricle (RV), and septum was reconstructed from CMR images. The hyperelastic warping method was used to reference the segmented model with the target images and biventricular circumferential, longitudinal, and radial strain-time curves were obtained. The peak systolic strains are then measured and analyzed in this study. Intra- and inter-observer reproducibility of the biventricular peak systolic strains was excellent with all ICCs > 0.92. LV peak systolic circumferential, longitudinal, and radial strain, respectively, exhibited a progressive decrease in magnitude from healthy control→HFpEF→HFrEF: control (-15.5 ± 1.90, -15.6 ± 2.06, 41.4 ± 12.2%); HFpEF (-9.37 ± 3.23, -11.3 ± 1.76, 22.8 ± 13.1%); HFrEF (-4.75 ± 2.74, -7.55 ± 1.75, 10.8 ± 4.61%). A similar progressive decrease in magnitude was observed for RV peak systolic circumferential, longitudinal and radial strain: control (-9.91 ± 2.25, -14.5 ± 2.63, 26.8 ± 7.16%); HFpEF (-7.38 ± 3.17, -12.0 ± 2.45, 21.5 ± 10.0%); HFrEF (-5.92 ± 3.13, -8.63 ± 2.79, 15.2 ± 6.33%). Furthermore, septum peak systolic circumferential, longitudinal, and radial strain magnitude decreased gradually from healthy control to HFrEF: control (-7.11 ± 1.81, 16.3 ± 3.23, 18.5 ± 8.64%); HFpEF (-6.11 ± 3.98, -13.4 ± 3.02, 12.5 ± 6.38%); HFrEF (-1.42 ± 1.36, -8.99 ± 2.96, 3.35 ± 2.95%). The ROC analysis indicated LV peak systolic circumferential strain to be the most sensitive marker for differentiating HFpEF from healthy controls. Our results suggest that the hyperelastic warping method with the CMR-derived strains may reveal subtle impairment in HF biventricular mechanics, in particular despite a "normal" ventricular ejection fraction in HFpEF.

5.
Int J Numer Method Biomed Eng ; 34(7): e2982, 2018 07.
Article in English | MEDLINE | ID: mdl-29521015

ABSTRACT

Individually personalized computational models of heart mechanics can be used to estimate important physiological and clinically-relevant quantities that are difficult, if not impossible, to directly measure in the beating heart. Here, we present a novel and efficient framework for creating patient-specific biventricular models using a gradient-based data assimilation method for evaluating regional myocardial contractility and estimating myofiber stress. These simulations can be performed on a regular laptop in less than 2 h and produce excellent fit between measured and simulated volume and strain data through the entire cardiac cycle. By applying the framework using data obtained from 3 healthy human biventricles, we extracted clinically important quantities as well as explored the role of fiber angles on heart function. Our results show that steep fiber angles at the endocardium and epicardium are required to produce simulated motion compatible with measured strain and volume data. We also find that the contraction and subsequent systolic stresses in the right ventricle are significantly lower than that in the left ventricle. Variability of the estimated quantities with respect to both patient data and modeling choices are also found to be low. Because of its high efficiency, this framework may be applicable to modeling of patient specific cardiac mechanics for diagnostic purposes.


Subject(s)
Heart Ventricles/metabolism , Models, Cardiovascular , Ventricular Function , Diastole , Finite Element Analysis , Humans , Magnetic Resonance Imaging , Reproducibility of Results , Stress, Mechanical , Systole
6.
J Biomech Eng ; 138(11)2016 11 01.
Article in English | MEDLINE | ID: mdl-27589906

ABSTRACT

Patient-specific biventricular computational models associated with a normal subject and a pulmonary arterial hypertension (PAH) patient were developed to investigate the disease effects on ventricular mechanics. These models were developed using geometry reconstructed from magnetic resonance (MR) images, and constitutive descriptors of passive and active mechanics in cardiac tissues. Model parameter values associated with ventricular mechanical properties and myofiber architecture were obtained by fitting the models with measured pressure-volume loops and circumferential strain calculated from MR images using a hyperelastic warping method. Results show that the peak right ventricle (RV) pressure was substantially higher in the PAH patient (65 mmHg versus 20 mmHg), who also has a significantly reduced ejection fraction (EF) in both ventricles (left ventricle (LV): 39% versus 66% and RV: 18% versus 64%). Peak systolic circumferential strain was comparatively lower in both the left ventricle (LV) and RV free wall (RVFW) of the PAH patient (LV: -6.8% versus -13.2% and RVFW: -2.1% versus -9.4%). Passive stiffness, contractility, and myofiber stress in the PAH patient were all found to be substantially increased in both ventricles, whereas septum wall in the PAH patient possessed a smaller curvature than that in the LV free wall. Simulations using the PAH model revealed an approximately linear relationship between the septum curvature and the transseptal pressure gradient at both early-diastole and end-systole. These findings suggest that PAH can induce LV remodeling, and septum curvature measurements may be useful in quantifying transseptal pressure gradient in PAH patients.


Subject(s)
Blood Pressure , Hypertension, Pulmonary/physiopathology , Models, Cardiovascular , Myocardial Contraction , Pulmonary Artery/physiopathology , Ventricular Dysfunction/physiopathology , Adult , Compressive Strength , Computer Simulation , Echocardiography/methods , Elastic Modulus , Humans , Hypertension, Pulmonary/diagnostic imaging , Hypertension, Pulmonary/etiology , Image Interpretation, Computer-Assisted/methods , Male , Pulmonary Artery/diagnostic imaging , Tensile Strength , Ventricular Dysfunction/complications , Ventricular Dysfunction/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...