Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Environ Manage ; 261: 110197, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32148270

ABSTRACT

One of the major advances of this research is to produce porous glass ceramics (PGCs) via a feasible and cost-effective powder forming chemistry to convert solid wastes, extracted titanium tailing (ETT) and waste glass (WG) into the value-added PGCs. The maximum handling amount of ETT (30%) is determined from systematic experiments, based on the end use of these PGCs, which are manifested as controlled-crystalline porous structures of hybrid matrices. These multiscale porous networks are composed of a tunable pore size, high surface area and accessibility. The synthetic PGCs are found to display enhanced physical properties, as a result, the stewardship of their intrinsic chemical behaviors can be secured. To elucidate, the PGC shows an apparent density of 0.60 ± 0.01 g cm-3, a porosity of 76.0 ± 0.4%, a high compressive strength of 3.8 ± 0.2 MPa, an available water adsorption ratio of 4.4 ± 0.1%, a heat conductivity of 0.103 ± 0.003 W m-1 °C-1 and an applicable coefficient of thermal expansion ((5.43 ± 0.05) × 10-6 m m-1 °C -1). This study indicates that indeed the powder forming chemistry provide a simple method to advance the conversion of industry and municipal solid waste (ETT & WG) into value-added PGCs with improved physical and chemical properties.


Subject(s)
Ceramics , Titanium , Glass , Porosity
SELECTION OF CITATIONS
SEARCH DETAIL
...