Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 183, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38341484

ABSTRACT

Lepus oiostolus (L. oiostolus) is a species endemic to the Qinghai-Tibet Plateau. However, the absence of a reference genome limits genetic studies. Here, we reported a high-quality L. oiostolus genome assembly, with scaffolds anchored to 24 chromosomes and a total assembled length of 2.80 Gb (contig N50 = 64.25 Mb). Genomic annotation uncovered 22,295 protein-coding genes and identified 49.84% of the sequences as transposable elements. Long interspersed nuclear elements (LINEs) constitute a high proportion of the genome. Our study is at the first time to report the chromosome-scale genome for the species of the L. oiostolus. It provides a valuable genomic resource for future research on the evolution of the Leporidae.


Subject(s)
Hares , Animals , Chromosomes/genetics , Genomics , Hares/genetics , Molecular Sequence Annotation , Phylogeny
2.
BMC Plant Biol ; 23(1): 534, 2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37919677

ABSTRACT

BACKGROUND: Global climate change poses a grave threat to biodiversity and underscores the importance of identifying the genes and corresponding environmental factors involved in the adaptation of tree species for the purposes of conservation and forestry. This holds particularly true for spruce species, given their pivotal role as key constituents of the montane, boreal, and sub-alpine forests in the Northern Hemisphere. RESULTS: Here, we used transcriptomes, species occurrence records, and environmental data to investigate the spatial genetic distribution of and the climate-associated genetic variation in Picea crassifolia. Our comprehensive analysis employing ADMIXTURE, principal component analysis (PCA) and phylogenetic methodologies showed that the species has a complex population structure with obvious differentiation among populations in different regions. Concurrently, our investigations into isolation by distance (IBD), isolation by environment (IBE), and niche differentiation among populations collectively suggests that local adaptations are driven by environmental heterogeneity. By integrating population genomics and environmental data using redundancy analysis (RDA), we identified a set of climate-associated single-nucleotide polymorphisms (SNPs) and showed that environmental isolation had a more significant impact than geographic isolation in promoting genetic differentiation. We also found that the candidate genes associated with altitude, temperature seasonality (Bio4) and precipitation in the wettest month (Bio13) may be useful for forest tree breeding. CONCLUSIONS: Our findings deepen our understanding of how species respond to climate change and highlight the importance of integrating genomic and environmental data in untangling local adaptations.


Subject(s)
Picea , Picea/genetics , Phylogeny , Plant Breeding , Forests , Genomics
SELECTION OF CITATIONS
SEARCH DETAIL
...