Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Adv ; 7(14)2021 Apr.
Article in English | MEDLINE | ID: mdl-33811068

ABSTRACT

A minute amount of long-chain flexible polymer dissolved in a turbulent flow can drastically change flow properties, such as reducing the drag and enhancing mixing. One fundamental riddle is how these polymer additives interact with the eddies of different spatial scales existing in the turbulent flow and, in turn, alter the turbulence energy transfer. Here, we show how turbulent kinetic energy is transferred through different scales in the presence of the polymer additives. In particular, we observed experimentally the emerging of a previously unidentified scaling range, referred to as the elastic range, where increasing amount of energy is transferred by the elasticity of the polymers. In addition, the existence of the elastic range prescribes the scaling of high-order velocity statistics. Our findings have important implications to many turbulence systems, such as turbulence in plasmas or superfluids where interaction between turbulent eddies and other nonlinear physical mechanisms are often involved.

2.
Anal Chem ; 89(8): 4387-4391, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28192966

ABSTRACT

We introduce an effective method to actively induce droplet generation using negative pressure. Droplets can be generated on demand using a series of periodic negative pressure pulses. Fluidic network models were developed using the analogy to electric networks to relate the pressure conditions for different flow regimes. Experimental results show that the droplet volume is correlated to the pressure ratio with a power law of 1.3. Using a pulsed negative pressure at the outlet, we are able to produce droplets in demand and with a volume proportional to the pulse width.

3.
Lab Chip ; 17(5): 751-771, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28197601

ABSTRACT

The ability to manipulate and sort droplets is a fundamental issue in droplet-based microfluidics. Various lab-on-a-chip applications can only be realized if droplets are systematically categorized and sorted. These micron-sized droplets act as ideal reactors which compartmentalize different biological and chemical reagents. Array processing of these droplets hinges on the competence of the sorting and integration into the fluidic system. Recent technological advances only allow droplets to be actively sorted at the rate of kilohertz or less. In this review, we present state-of-the-art technologies which are implemented to efficiently sort droplets. We classify the concepts according to the type of energy implemented into the system. We also discuss various key issues and provide insights into various systems.

4.
Micromachines (Basel) ; 8(8)2017 Aug 17.
Article in English | MEDLINE | ID: mdl-30400442

ABSTRACT

We present a total of 19 articles in this special issue of Micromachines entitled, "Insights and Advancements in Microfluidics."[...].

5.
Lab Chip ; 16(16): 2982-6, 2016 08 02.
Article in English | MEDLINE | ID: mdl-27173587

ABSTRACT

We present for the first time an experimental study on the droplet deformation induced by an AC electric field in droplet-based microfluidics. It is found that the deformation of the droplets becomes stronger with increasing electric field intensity and frequency. The measured electric field intensity dependence of the droplet deformation is consistent with an early theoretical prediction for stationary droplets. We also proposed a simple equivalent circuit model to account for the frequency dependence of the droplet deformation. The model well explains our experimental observations. In addition, we found that the droplets can be deformed repeatedly by applying an amplitude modulation (AM) signal.

6.
Phys Rev Lett ; 115(15): 154502, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26550726

ABSTRACT

We report the first experimental study of the influences of the thermal boundary condition on turbulent thermal convection. Two configurations were examined: one had a constant heat flux at the bottom boundary and a constant temperature at the top (CFCT cell); the other had constant temperatures at both boundaries (CTCT cell). In addition to producing different temperature stability in the boundary layers, the differences in the boundary condition lead to rather unexpected changes in the flow dynamics. It is found that, surprisingly, reversals of the large-scale circulation occur more frequently in the CTCT cell than in the CFCT cell, despite the fact that in the former its flow strength is on average 9% larger than that in the latter. Our results not only show which aspects of the thermal boundary condition are important in thermal turbulence, but also reveal that, counterintuitively, the stability of the flow is not directly coupled to its strength.

7.
Phys Rev Lett ; 111(2): 024501, 2013 Jul 12.
Article in English | MEDLINE | ID: mdl-23889409

ABSTRACT

We present a study of the energy transfer in the bulk of a turbulent flow with dilute long-chain polymer additives. Based on prior work by Tabor and de Gennes [Europhys. Lett. 2, 519 (1986); Physica (Amsterdam) 140A, 9 (1986)], we propose a theory on the energy flux into the elastic degrees of freedom of the polymer chains. This elastic energy flux, which increases as the length scale decreases, gradually reduces the energy transferred to smaller scales through turbulence cascade and hence suppresses small scale fluctuations. The balance of the elastic energy flux and the turbulence energy cascade gives an elastic length scale, which describes the effect of polymer elasticity on turbulence in the inertial range. Predictions of this new "energy flux balance theory" agree excellently with our experimental results.

8.
Phys Rev Lett ; 105(3): 034503, 2010 Jul 16.
Article in English | MEDLINE | ID: mdl-20867768

ABSTRACT

We analyze the reversals of the large-scale flow in Rayleigh-Bénard convection both through particle image velocimetry flow visualization and direct numerical simulations of the underlying Boussinesq equations in a (quasi-) two-dimensional, rectangular geometry of aspect ratio 1. For medium Prandtl number there is a diagonal large-scale convection roll and two smaller secondary rolls in the two remaining corners diagonally opposing each other. These corner-flow rolls play a crucial role for the large-scale wind reversal: They grow in kinetic energy and thus also in size thanks to plume detachments from the boundary layers up to the time that they take over the main, large-scale diagonal flow, thus leading to reversal. The Rayleigh vs Prandtl number space is mapped out. The occurrence of reversals sensitively depends on these parameters.

9.
Phys Rev Lett ; 102(4): 044503, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-19257427

ABSTRACT

We report an experimental study of the three-dimensional spatial structure of the low-frequency temperature oscillations in a cylindrical Rayleigh-Bénard convection cell. Through simultaneous multipoint temperature measurements it is found that, contrary to the popular scenario, thermal plumes are emitted neither periodically nor alternately, but randomly and continuously, from the top and bottom plates. We further identify a new flow mode-the sloshing mode of the large-scale circulation (LSC). This sloshing mode, together with the torsional mode of the LSC, are found to be the origin of the oscillation of the temperature field.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 78(3 Pt 2): 036326, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18851162

ABSTRACT

We report a systematic experimental study of the orientation and the flow strength of the large-scale circulation (LSC) in water-filled cylindrical Rayleigh-Bénard convection cells with aspect ratios 2.3, 1, and 0.5 by both direct velocity measurement and the indirect multithermal-probe measurement. Unlike its weak effect in the system's global heat transport, the aspect ratio Gamma is found to play an important role in the dynamics of the azimuthal motion of the LSC. It is found that in larger Gamma geometries the azimuthal motion of the LSC's vertical plane is confined in smaller azimuthal region than that in smaller Gamma geometries. The twisting motion between top and bottom parts of the LSC observed in the Gamma=1 geometry is found to be absent in the Gamma=1/2 case. It is found that in the Gamma=1/2 geometry the orientational change mid R:Deltavarphimid R: through a reorientation has an exponential distribution, in contrast to the power-law distribution for the Gamma=1 case. Despite the difference in orientational change, the occurrence of the reorientations is a Poisson process in both geometries. Using the conditional average of the time interval between adjacent cessations or reversals on the rebound flow strength, we demonstrate the possibility to empirically predict when the next cessation or reversal will most likely occur if the rebound flow strength of the preceding cessation or reversal is given.

11.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(6 Pt 2): 066307, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17677357

ABSTRACT

We present an experimental study of cessations and reversals of the large-scale circulation (LSC) in turbulent thermal convection in a cylindrical cell of aspect ratio (Gamma) 1/2 . It is found that cessations and reversals of the LSC occur in Gamma = 1/2 geometry an order-of-magnitude more frequently than they do in Gamma=1 cells, and that after a cessation the LSC is most likely to restart in the opposite direction, i.e., reversals of the LSC are the most probable cessation events. This contrasts sharply to the finding in Gamma=1 geometry and implies that cessations in the two geometries are governed by different dynamics. It is found that the occurrence of reversals is a Poisson process and that a stronger rebound of the flow strength after a reversal or cessation leads to a longer period of stability of the LSC. Several properties of reversals and cessations in this system are found to be statistically similar to those of geomagnetic reversals. A direct measurement of the velocity field reveals that a cessation corresponds to a momentary decoherence of the LSC.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 73(5 Pt 2): 056312, 2006 May.
Article in English | MEDLINE | ID: mdl-16803042

ABSTRACT

We present an experimental study of the azimuthal motion of the mean wind in turbulent thermal convection. The experiments were conducted with cylindrical convection cells of unity aspect ratio and over the range of the Rayleigh number from 1 x 10(9) to 1 x 10(10). The azimuthal angle of the circulation plane of the mean wind was measured using both the particle image velocimetry and flow-visualization techniques. It is found that the azimuthal motion consists of erratic fluctuations and a time-periodic oscillation. The orientation of the wind is found to be "locked," i.e., it fluctuates about a preferred direction most of the time with all other orientations appearing as "transient states," and large excursions of the azimuthal angle often result in a net rotation which takes the wind back to the preferred orientation. The rate of erratic rotation of the circulation plane is found to have a strong dependence on Ra. Our result suggests that the oscillatory motion of the wind in its vertically oriented circulation plane and the orientational oscillation of the circulation plane itself have the same dynamic origin.

13.
Phys Rev Lett ; 95(7): 074502, 2005 Aug 12.
Article in English | MEDLINE | ID: mdl-16196786

ABSTRACT

We report an experimental study of flow dynamics and structure in turbulent thermal convection. Flow visualization, together with particle image velocimetry (PIV) measurement, reveal that the instantaneous flow structure consists of an elliptical circulatory roll and two smaller counterrotating rolls, and that the azimuthal motion of the quasi-2D instantaneous flow structure produces a time-averaged 3D flow pattern featuring two toroidal rings near the top and bottom plates, respectively. The apparently stochastic azimuthal motion of the flow structure, which generates a net rotation on average, is found to possess the characters of a Brownian ratchet. Using an artificially generated flow mode, we are able to produce a bimodal-Nu behavior and thus demonstrate that different flow states can indeed produce different global heat transport in a turbulent convection system.

SELECTION OF CITATIONS
SEARCH DETAIL
...