Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Sci ; 40(2): 285-290, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38062249

ABSTRACT

The rapid and accurate detection of miRNAs is of great significance for early diagnosis and treatment of cancer. Hence, a novel enzyme-free and label-free electrochemical biosensor based on bio-barcode amplification for detecting miRNAs was presented. Sandwich structures constructed of magnetic nanoparticles modified with DNA probes, gold nanoparticles with numerous barcoded DNA strands that hybridized with target miRNAs were fabricated as the amplifier. The released barcoded DNA strands then acted as the secondary targets and triggered the electrochemical sensor with a significant electrochemical response. A highly sensitive (detection limit of 0.24 fM) and selective electrochemical miRNA detection was realized, which has great potential for application in miRNA-related clinical diagnosis and biochemical research.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , MicroRNAs , MicroRNAs/genetics , Gold/chemistry , Metal Nanoparticles/chemistry , DNA/chemistry , Electrochemical Techniques , Limit of Detection
2.
Anal Methods ; 15(5): 626-630, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36645653

ABSTRACT

Silver(I) ions (Ag+) are harmful to humans and can be bioaccumulated in organisms. Although numerous methods for Ag+ analysis have been established, new strategies are still in urgent need. Here, we propose a colorimetric sensor based on polyadenine (polyA)-mediated DNA-functionalized gold nanoparticles (AuNPs) for the specific measurement of Ag+ ions. In this strategy, a polyA-modified Au probe with high uniformity was assembled successfully. The method was based on Ag+-induced aggregation of the probe. Ag+ was reflected according to the color variations of solution. Taking advantage of the low cost and convenient assembly of the polyA-based Au probe, our strategy determined Ag+ with high sensitivity and wide range. In addition, by changing probes or nanoparticles, the proposed strategy is expected to be a universal platform for detecting other analytes in environmental and even biological samples.


Subject(s)
Metal Nanoparticles , Humans , Gold , Colorimetry/methods , Ions
3.
Anal Sci ; 39(4): 565-571, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36680671

ABSTRACT

Mercury ion (Hg2+) is the most widespread and highly toxic environmental pollutant, which exerts numerous adverse effects on environmental and human health. There is an urgent need to develop a convenient method for detecting Hg2+. Herein, a novel dual-mode sensor based on colorimetric and Tyndall effect of gold nanoparticles was developed for ultra-sensitive determination of Hg2+. In this strategy, a polyA-modified Au probe with high uniformity was assembled successfully. Both modes were based on Hg2+-induced aggregation of the probes. Hg2+ was reflected according to the color variations of solution and the Tyndall effect of Au reporter. With the aid of a laser pointer, the Tyndall mode demonstrated about 615-fold improvement on sensitivity compared with the colorimetry way. Taking advantages of low cost and convenient assembly of polyA-based Au probe and the combination of colorimetry and Tyndall effect, our strategy determined the Hg2+ with high sensitivity and wide range. By changing probes or nanoparticles, the proposed strategy is expected to be a universal platform for detecting other analytes in environmental and even biological samples. A novel dual-mode sensor based on colorimetric and tyndall effect of gold nanoparticles for ultra-sensitive determination of Hg2+ was exploited.

4.
Analyst ; 147(22): 4980-4985, 2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36197295

ABSTRACT

DNA methyltransferase (MTase) is an important regulatory enzyme in various biological processes. However, current methods for investigating MTase activity are still limited in terms of sensitivity and/or generality. Herein, we proposed a dual amplification fluorescence strategy for the ultrasensitive detection of DNA adenine methylation methyltransferase (Dam MTase) activity based on strand displacement amplification (SDA) coupled with rolling circle amplification (RCA). In this study, the hairpin probe could not be cleaved by Nt.AlwI nicking endonuclease (Nt.AlwI) in the presence of Dam MTase, and the subsequent SDA-RCA reaction was blocked, resulting in a weak fluorescence signal. Moreover, the blocking effect was more pronounced at a higher concentration of Dam MTase. This assay provides a very low detection limit (down to 0.0067 U ml-1), as well as good selectivity against other types of MTases (e.g., CpG methyltransferase (M.SssI MTase)). In addition, the analytical mode improves the generality and can be extended to the detection of other types of DNA MTases.


Subject(s)
Biosensing Techniques , DNA Modification Methylases , DNA Methylation , Spectrometry, Fluorescence/methods , Methyltransferases/genetics , DNA/genetics , Biosensing Techniques/methods
5.
J Pharm Biomed Anal ; 219: 114935, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-35820248

ABSTRACT

DNA methylation catalyzed by DNA adenine methylation methyltransferase (Dam MTase) is strongly connected with a variety of biological processes, hence, monitoring Dam MTase activity is of great importance. Here, we developed a rapid and sensitive fluorescence sensing strategy for the detection of Dam MTase activity based on methylation-blocked enzymatic recycling amplification. In this fluorescence sensing system, Dam MTase-induced methylation blocked the subsequent reactions. In contrast, in the absence of Dam MTase, the unmethylated probe initiated the cascade strand displacement amplification for significant signal amplification. Under optimized conditions, this method has a lower detection limit of 0.67 U/mL and a shorter assay time (90 min) compared with previously reported similar methodologies.


Subject(s)
Biosensing Techniques , Site-Specific DNA-Methyltransferase (Adenine-Specific) , Biosensing Techniques/methods , DNA , DNA Methylation , Site-Specific DNA-Methyltransferase (Adenine-Specific)/metabolism , Spectrometry, Fluorescence
6.
Materials (Basel) ; 14(16)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34443114

ABSTRACT

The purpose of this study is to investigate the effects of laser spot size on the mechanical properties of AISI 420 stainless steel, fabricated by selective laser melting (SLM), process. Tensile specimens were built directly via the SLM process, using various laser spot diameters, namely 0.1, 0.2, 0.3, and 0.4 mm. The corresponding volumetric energy density (EV) is 80, 40, 26.7, and 20 J/mm3, respectively. Experimental results indicate that laser spot size is an important process parameter and has significant effects on the surface roughness, hardness, density, tensile strength, and microstructure of the SLM AISI 420 builds. A large laser spot with low volumetric energy density results in balling, un-overlapped defects, a large re-heated zone, and a large sub-grain size. As a result, SLM specimens fabricated by the largest laser spot diameter of 0.4 mm exhibit the roughest surface, lowest densification, and lowest ultimate tensile strength. To ensure complete melting of the powder and melt pool stability, EV of 80 J/mm3 proves to be a suitable laser energy density value for the given SLM processing and material system.

7.
Materials (Basel) ; 13(22)2020 Nov 15.
Article in English | MEDLINE | ID: mdl-33203109

ABSTRACT

Mechanical properties and microstructure are investigated for a martensitic stainless steel (AISI 420) fabricated by selective laser melting (SLM) in three build directions. The tensile specimens built by SLM are classified into three groups. Group A is horizontally built in the thickness direction, Group B is horizontally built in the width direction, and Group C is vertically built in the length direction. The loading direction in tensile test is parallel to the build direction of Group C, but perpendicular to that of Groups A and B. Experimental results indicate build direction has significant effects on the residual stress, hardness, and tensile properties of SLM builds. Microstructural analyses indicate the as-fabricated SLM AISI 420 builds exhibit elongated cells and acicular structures which are composed of martensite and retained austenite phases growing along the build direction. Such anisotropy in the microstructure leads to anisotropic mechanical properties as Group C specimens (length direction) exhibit greater yield stress, ultimate tensile stress, and elongation than the specimens of Groups A (thickness direction) and B (width direction). The residual compressive stress in the gauge section also contributes to the superior tensile properties of Group C (length direction), as compared to Groups A (thickness direction) and B (width direction), which exhibit residual tensile stress in the gauge section.

SELECTION OF CITATIONS
SEARCH DETAIL
...