Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Circ Res ; 111(7): 837-41, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22891046

ABSTRACT

RATIONALE: Failing cardiomyocytes exhibit decreased efficiency of excitation-contraction (E-C) coupling. The downregulation of junctophilin-2 (JP2), a protein anchoring the sarcoplasmic reticulum to T-tubules, has been identified as a major mechanism underlying the defective E-C coupling. However, the regulatory mechanism of JP2 remains unknown. OBJECTIVE: To determine whether microRNAs regulate JP2 expression. METHODS AND RESULTS: Bioinformatic analysis predicted 2 potential binding sites of miR-24 in the 3'-untranslated regions of JP2 mRNA. Luciferase assays confirmed that miR-24 suppressed JP2 expression by binding to either of these sites. In the aortic stenosis model, miR-24 was upregulated in failing cardiomyocytes. Adenovirus-directed overexpression of miR-24 in cardiomyocytes decreased JP2 expression and reduced Ca(2+) transient amplitude and E-C coupling gain. CONCLUSIONS: MiR-24-mediated suppression of JP2 expression provides a novel molecular mechanism for E-C coupling regulation in heart cells and suggests a new target against heart failure.


Subject(s)
Aortic Valve Stenosis/metabolism , Heart Failure/metabolism , Membrane Proteins/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Up-Regulation , Animals , Aortic Valve Stenosis/pathology , Calcium/metabolism , Cells, Cultured , Computational Biology , Excitation Contraction Coupling/physiology , Heart Failure/pathology , Membrane Proteins/genetics , MicroRNAs/genetics , Models, Animal , Myocytes, Cardiac/pathology , RNA, Messenger/metabolism , Rats , Sarcoplasmic Reticulum/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...